17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of steam-treated giant bamboo for production of fermentable sugars.

      Biotechnology Progress
      Africa, Southern, Animal Feed, Bambusa, microbiology, Carbohydrate Metabolism, Carbohydrates, biosynthesis, Ethanol, Fermentation, Steam

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Giant bamboo plantations are currently being established in the Southern Africa region and can be considered as potential lignocellulosic feedstock for the production of second generation bioethanol. In this study, giant bamboo internodal material was subjected to sulphur dioxide (SO(2)) impregnated steam pretreatment prior to enzymatic hydrolysis. The effect of temperature, residence time, and acidity on the overall sugar recovery and byproduct formation was studied using response surface response technology according to a central composite experimental design (CCD) at a fixed SO(2) concentration of 2.5% (w/w liquid) after impregnation. The results showed that pretreatment conditions with combined severity factor (CSF) values and enzyme dosages greater than 1.72 and 30 FPU/g water insoluble solid, respectively, were required to obtain an efficient glucan digestibility and a good overall glucose recovery. Up to 81.2% of the sugar in the raw material was recovered for a CSF of 2.25. However, considering overall sugar yield and byproducts concentration, the pretreated material obtained with a CSF of 1.62 can be considered as the most appropriate for SSF experiments using a xylose-utilizing yeast. At these conditions, it could be possible to obtain up to 247 L of ethanol per dry ton of giant bamboo considering hexose and pentose sugars fermentation. This amount could be increased up to 292 L of ethanol per dry ton of giant bamboo with the maximum sugar yield obtained (CSF = 2.25) if the microorganism possesses robust fermentative characteristics as well as a high resistance to pretreatment by-products. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

          Related collections

          Author and article information

          Journal
          21448931
          10.1002/btpr.580

          Chemistry
          Africa, Southern,Animal Feed,Bambusa,microbiology,Carbohydrate Metabolism,Carbohydrates,biosynthesis,Ethanol,Fermentation,Steam

          Comments

          Comment on this article