5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Lesions of the Dorsomedial Hypothalamic Nucleus Do Not Influence the Daily Profile of Pineal Metabolism in Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study attempted to characterize the effects of electrolytic lesions of the hypothalamic dorsomedial nucleus on the daily profile of pineal metabolism as well as on the inhibition of pineal melatonin synthesis induced by acute light exposure during the night. Adult male Wistar rats (n = 107, 12:12 h light-dark cycle) were left intact (n = 47) or lesioned (n = 60). Lesioned rats and their respective controls were killed at six time points distributed throughout the light-dark cycle. At ZT (zeitgeber time) 18 the animals were killed either in the dark or after 15 min of light stimulation. Pineal glands were assayed using high-performance liquid chromatography with electrochemical detection (HPLC-ED). There was no difference in the amounts of pineal indoles between lesioned and control rats under any of the experimental situations tested. These results suggest that in rats, the hypothalamic dorsomedial nucleus does not participate in either the neural control of daily pineal metabolism or the nocturnal light-induced inhibition of the pineal metabolism.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus.

          The visual pathway and central neural structures involved in the photic and endogenous regulation of the activity of pineal N-acetyltransferase and hydroxyindole-O-methyltransferase were investigated. The results indicate that the visual pathway regulating both enzymes is the retinohypothalamic tract, and that the inferior accessory optic tract is clearly not involved in the regulation of hydroxyindole-O-methyltransferase activity, as has been previously thought. In addition, the suprachiasmatic nucleus was found to be necessary for the generation of a rhythm in N-acetyltransferase activity in blinded animals, and to be responsible for the tonic elevation of hydroxyindole-O-methyltransferase activity in blinded animals. Finally, it was concluded that the rapid and large daily changes in N-acetyltransferase activity seen in a normal lighting cycle and the much slower and smaller changes in hydroxyindole-O-methyltransferase activity seen only after weeks in constant lighting conditions are mediated by the same neural tract; the different time courses of the effects of environmental lighting may be explained on the basis of different intracellular regulatory mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord.

            By application of the anterograde transport technique of Phaseolus vulgaris leuco-agglutinin the descending autonomic projection of the paraventricular hypothalamic nucleus was investigated. The Phaseolus lectin technique allowed the detection of the cells of origin in the paraventricular PVN, the precise position of two distinct descending axon pathways and the detailed morphology of terminal structures in midbrain, medulla oblongata and spinal cord.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The projections of the dorsomedial hypothalamic nucleus in the rat.

              The dorsomedial hypothalamic nucleus (DMH) output pathways are revealed by using autoradiographic tracing of tritium labeled Leucine and by the recently introduced Phaseolus vulgaris leuco-agglutinin immunocytochemical method. Terminal labeling appears in the dorsal motor nucleus of the vagus, nucleus ambiguus and in the parvocellular reticular formation at the lower medullary level. Mesencephalic labeling is found in the periaqueductal gray at the level of the oculomotor nucleus. In the hypothalamus labeled terminal boutons are identified in the lateral and ventromedial hypothalamic nuclei but also in the parvocellular paraventricular nucleus. Furthermore, the circumventricular organs are found to receive a dense DMH input, particularly the organum vasculosum of the lamina terminalis and the subfornical organ. These findings are discussed in relation to the dorsomedial nucleus involvement in the control of feeding and pancreatic hormone release. It appears that the DMH participates in this control via descending pathways to the preganglionic pancreas innervating neurons but also via a neuroendocrine route. The latter connection is indicated by terminal labeling in the parvocellular paraventricular nucleus in the area that contains the corticotropin-releasing factor positive cells.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2001
                February 2001
                23 February 2001
                : 73
                : 2
                : 123-128
                Affiliations
                aDepartment of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, and bLaboratory of Pharmacology, Institute Butantan, São Paulo, Brazil
                Article
                54628 Neuroendocrinology 2001;73:123–128
                10.1159/000054628
                11244299
                034a6fbe-9895-4b24-a2b8-ad8de9e3ac00
                © 2001 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 3, Tables: 1, References: 31, Pages: 6
                Categories
                Pineal Gland

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                N-acetylserotonin,Pineal gland,Serotonin,Circadian rhythms,Melatonin,Dorsomedial hypothalamic nucleus

                Comments

                Comment on this article