13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Lung in Primary Immunodeficiencies: New Concepts in Infection and Inflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoglobulin replacement therapy (IGRT) has contributed critically to the management of primary antibody deficiencies (PAD) and the decrease in pneumonia rate. However, despite adequate IGRT and improved prognosis, patients with PAD continue to experience recurrent respiratory tract infections, leading to bronchiectasis and continuing decline in lung function with a severe impact on their quality of life. Moreover, non-infectious inflammatory and interstitial lung complications, such as granulomatous-lymphocytic interstitial lung disease, contribute substantially to the overall morbidity of PAD. These conditions develop much more often than appreciated and represent a major therapeutic challenge. Therefore, a regular assessment of the structural and functional condition of the lung and the upper airways with appropriate treatment is required to minimize the deterioration of lung function. This work summarizes the knowledge on lung complications in PAD and discusses the currently available diagnostic tools and treatment options.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Microbiota regulates immune defense against respiratory tract influenza A virus infection.

          Although commensal bacteria are crucial in maintaining immune homeostasis of the intestine, the role of commensal bacteria in immune responses at other mucosal surfaces remains less clear. Here, we show that commensal microbiota composition critically regulates the generation of virus-specific CD4 and CD8 T cells and antibody responses following respiratory influenza virus infection. By using various antibiotic treatments, we found that neomycin-sensitive bacteria are associated with the induction of productive immune responses in the lung. Local or distal injection of Toll-like receptor (TLR) ligands could rescue the immune impairment in the antibiotic-treated mice. Intact microbiota provided signals leading to the expression of mRNA for pro-IL-1β and pro-IL-18 at steady state. Following influenza virus infection, inflammasome activation led to migration of dendritic cells (DCs) from the lung to the draining lymph node and T-cell priming. Our results reveal the importance of commensal microbiota in regulating immunity in the respiratory mucosa through the proper activation of inflammasomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What are the consequences of the disappearing human microbiota?

            Humans and our ancestors have evolved since the most ancient times with a commensal microbiota. The conservation of indicator species in a niche-specific manner across all of the studied human population groups suggests that the microbiota confer conserved benefits on humans. Nevertheless, certain of these organisms have pathogenic properties and, through medical practices and lifestyle changes, their prevalence in human populations is changing, often to an extreme degree. In this Essay, we propose that the disappearance of these ancestral indigenous organisms, which are intimately involved in human physiology, is not entirely beneficial and has consequences that might include post-modern conditions such as obesity and asthma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease.

              Rhinovirus infection is followed by significantly increased frequencies of positive, potentially pathogenic sputum cultures in chronic obstructive pulmonary disease (COPD). However, it remains unclear whether these represent de novo infections or an increased load of organisms from the complex microbial communities (microbiome) in the lower airways. To investigate the effect of rhinovirus infection on the airway bacterial microbiome. Subjects with COPD (n = 14) and healthy control subjects with normal lung function (n = 17) were infected with rhinovirus. Induced sputum was collected at baseline before rhinovirus inoculation and again on Days 5, 15, and 42 after rhinovirus infection and DNA was extracted. The V3-V5 region of the bacterial 16S ribosomal RNA gene was amplified and pyrosequenced, resulting in 370,849 high-quality reads from 112 of the possible 124 time points. At 15 days after rhinovirus infection, there was a sixfold increase in 16S copy number (P = 0.007) and a 16% rise in numbers of proteobacterial sequences, most notably in potentially pathogenic Haemophilus influenzae (P = 2.7 × 10(-20)), from a preexisting community. These changes occurred only in the sputum microbiome of subjects with COPD and were still evident 42 days after infection. This was in contrast to the temporal stability demonstrated in the microbiome of healthy smokers and nonsmokers. After rhinovirus infection, there is a rise in bacterial burden and a significant outgrowth of Haemophilus influenzae from the existing microbiota of subjects with COPD. This is not observed in healthy individuals. Our findings suggest that rhinovirus infection in COPD alters the respiratory microbiome and may precipitate secondary bacterial infections.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                08 August 2018
                2018
                : 9
                : 1837
                Affiliations
                [1] 1Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School , Hannover, Germany
                [2] 2Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI, United States
                [3] 3Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona , Barcelona, Spain
                [4] 4Immunodeficiency Centre for Wales, University Hospital of Wales , Cardiff, United Kingdom
                Author notes

                Edited by: Waleed Al-Herz, Kuwait University, Kuwait

                Reviewed by: Bodo Grimbacher, Universitätsklinikum Freiburg, Germany; Jolan Eszter Walter, University of South Florida, United States

                *Correspondence: Ulrich Baumann, baumann.ulrich@ 123456mh-hannover.de ; John M. Routes, jroutes@ 123456mcw.edu

                These authors have contributed equally to this work.

                Specialty section: This article was submitted to Primary Immunodeficiencies, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.01837
                6096054
                30147696
                034cc6e5-d41d-476e-9867-2de530d44fe8
                Copyright © 2018 Baumann, Routes, Soler-Palacín and Jolles.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 April 2018
                : 25 July 2018
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 140, Pages: 16, Words: 12660
                Funding
                Funded by: CSL Behring 10.13039/100008322
                Categories
                Immunology
                Review

                Immunology
                primary immunodeficiency,lung complications,immunoglobulin,comorbidity,bronchiectasis,granulomatous-lymphocytic interstitial lung disease,pulmonary functional tests,lung computed tomographic scan

                Comments

                Comment on this article