47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.

          Methods

          Anopheles gambiae s.l populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. Anopheles gambiae mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine kdr and Ace.1 R allelic frequencies and activity of the detoxification enzymes.

          Results

          Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in An. gambiae s.l. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of An. gambiae s.s. and Anopheles arabiensis. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. Anopheles gambiae s.l. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of 1014F kdr allele was initially showed in An. gambiae from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the L1014S kdr mutation was found in An. arabiensis in Benin. The ace.1 R mutation was almost absent in An. gambiae s.l.

          Conclusion

          Pyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The 1014S kdr allele was first identified in wild population of An. arabiensis hence confirming the expansion of pyrethroid resistance alleles in Africa.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?

            The use of pyrethroid insecticides in malaria vector control has increased dramatically in the past decade through the scale up of insecticide treated net distribution programmes and indoor residual spraying campaigns. Inevitably, the major malaria vectors have developed resistance to these insecticides and the resistance alleles are spreading at an exceptionally rapid rate throughout Africa. Although substantial progress has been made on understanding the causes of pyrethroid resistance, remarkably few studies have focused on the epidemiological impact of resistance on current malaria control activities. As we move into the malaria eradication era, it is vital that the implications of insecticide resistance are understood and strategies to mitigate these effects are implemented. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular basis of insecticide resistance in mosquitoes.

              Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2011
                12 September 2011
                : 10
                : 261
                Affiliations
                [1 ]Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Bénin
                [2 ]Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-CNRS 5290-IRD 224, 01 BP 4414 RP Cotonou, Bénin
                [3 ]Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UR-Hortsys, 34980 Montpellier, France
                [4 ]Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
                [5 ]IRD, MIVEGEC, UM1-CNRS 5290-IRD 224, Laboratoire de lutte contre les Insectes Nuisibles (LIN), Montpellier France
                Article
                1475-2875-10-261
                10.1186/1475-2875-10-261
                3179749
                21910856
                035c3a27-18cd-435b-b432-691239b61ec2
                Copyright ©2011 Djègbè et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 February 2011
                : 12 September 2011
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article