14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Statins: a viable candidate for host-directed therapy against infectious diseases

      , ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Statins were first identified over 40 years ago as lipid-lowering drugs and have been remarkably effective in treating cardiovascular diseases. As research advanced, the protective effects of statins were additionally attributed to their anti-inflammatory, antioxidative, anti-thrombotic and immunomodulatory functions rather than lipid-lowering abilities alone. By promoting host defence mechanisms and inhibiting pathological inflammation, statins increase survival in human infectious diseases. At the cellular level, statins inhibit the intermediates of the host mevalonate pathway, thus compromising the immune evasion strategies of pathogens and their survival. Here, we discuss the potential use of statins as an inexpensive and practical alternative or adjunctive host-directed therapy for infectious diseases caused by intracellular pathogens, such as viruses, protozoa, fungi and bacteria.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Structural mechanism for statin inhibition of HMG-CoA reductase.

          HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR complexed with six different statins. The statins occupy a portion of the binding site of HMG-CoA, thus blocking access of this substrate to the active site. Near the carboxyl terminus of HMGR, several catalytically relevant residues are disordered in the enzyme-statin complexes. If these residues were not flexible, they would sterically hinder statin binding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of cholesterol and lipid organization in disease.

            Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statins and cancer prevention.

              Randomized controlled trials for preventing cardiovascular disease indicated that statins had provocative and unexpected benefits for reducing colorectal cancer and melanoma. These findings have led to the intensive study of statins in cancer prevention, including recent, large population-based studies showing statin-associated reductions in overall, colorectal and prostate cancer. Understanding the complex cellular effects (for example, on angiogenesis and inflammation) and the underlying molecular mechanisms of statins (for example, 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase-dependent processes that involve geranylgeranylation of Rho proteins, and HMG-CoA-independent processes that involve lymphocyte-function-associated antigen 1) will advance the development of molecularly targeted agents for preventing cancer. This understanding might also help the development of drugs for other ageing-related diseases with interrelated molecular pathways.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                November 28 2018
                Article
                10.1038/s41577-018-0094-3
                30487528
                03633a1d-284b-47c2-bb87-81d46672d0c9
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article