20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genotype-by-diet effects on co-variation in Lp-PLA2 activity and LDL-cholesterol concentration in baboons fed an atherogenic diet.

      Journal of Lipid Research
      1-Alkyl-2-acetylglycerophosphocholine Esterase, metabolism, Animals, Cholesterol, LDL, blood, Dietary Fats, administration & dosage, Female, Genetic Predisposition to Disease, Genotype, Male, Papio, Quantitative Trait Loci, Risk Factors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) activity, a biomarker of inflammation, and concentration of its primary associated lipoprotein, LDL, are correlated with adverse coronary outcomes. We previously reported a quantitative trait locus (QTL) corresponding to HSA2p24.3-p23.2 with pleiotropic effects on Lp-PLA(2) activity and LDL-cholesterol (LDL-C) concentration in baboons fed a basal diet. Here, our goal was to locate pleiotropic QTLs influencing both traits in the same baboons fed a high-cholesterol, high-fat (HCHF) diet, and to assess whether shared genetic effects on these traits differ between diets. We assayed Lp-PLA(2) activity and LDL-C concentration in 683 baboons fed the HCHF diet. We used a bivariate maximum likelihood-based variance components approach in whole-genome linkage screens to locate a QTL [logarithm of odds (LOD) = 3.13, genome-wide P = 0.019] corresponding to HSA19q12-q13.2 with pleiotropic effects on Lp-PLA(2) activity and LDL-C levels in the HCHF diet. We additionally found significant evidence of genetic variance in response to diet for Lp-PLA(2) activity (P = 0.0017) and for LDL-C concentration (P = 0.00001), revealing a contribution of genotype-by-diet interaction to covariation in these two traits. We conclude that the pleiotropic QTLs detected at 2p24.3-p23.2 and 19q12-q13.2 on the basal and HCHF diets, respectively, exert diet-specific effects on covariation in Lp-PLA(2) activity and LDL-C concentration.

          Related collections

          Author and article information

          Comments

          Comment on this article