17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent ice dynamic and surface mass balance of Union Glacier in the West Antarctic Ice Sheet

      , , , ,
      The Cryosphere
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Here we present the results of a comprehensive glaciological investigation of Union Glacier (79°46' S/83°24' W) in the West Antarctic Ice Sheet (WAIS), a major outlet glacier within the Ellsworth Mountains. Union Glacier flows into the Ronne Ice Shelf, where recent models have indicated the potential for significant grounding line zone (GLZ) migrations in response to changing climate and ocean conditions. To elaborate a glaciological base line that can help to evaluate the potential impact of this GLZ change scenario, we installed an array of stakes on Union Glacier in 2007. The stake network has been surveyed repeatedly for elevation, velocity, and net surface mass balance. The region of the stake measurements is in near-equilibrium, and ice speeds are 10 to 33 m a−1. Ground-penetrating radars (GPR) have been used to map the subglacial topography, internal structure, and crevasse frequency and depth along surveyed tracks in the stake site area. The bedrock in this area has a minimum elevation of −858 m a.s.l., significantly deeper than shown by BEDMAP2 data. However, between this deeper area and the local GLZ, there is a threshold where the subglacial topography shows a maximum altitude of 190 m. This subglacial condition implies that an upstream migration of the GLZ will not have strong effects on Union Glacier until it passes beyond this shallow ice pinning point.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ice flow of the Antarctic ice sheet.

            We present a reference, comprehensive, high-resolution, digital mosaic of ice motion in Antarctica assembled from multiple satellite interferometric synthetic-aperture radar data acquired during the International Polar Year 2007 to 2009. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland over the entire continent. This view of ice sheet motion emphasizes the importance of basal-slip-dominated tributary flow over deformation-dominated ice sheet flow, redefines our understanding of ice sheet dynamics, and has far-reaching implications for the reconstruction and prediction of ice sheet evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet.

              Theory has suggested that the West Antarctic Ice Sheet may be inherently unstable. Recent observations lend weight to this hypothesis. We reassess the potential contribution to eustatic and regional sea level from a rapid collapse of the ice sheet and find that previous assessments have substantially overestimated its likely primary contribution. We obtain a value for the global, eustatic sea-level rise contribution of about 3.3 meters, with important regional variations. The maximum increase is concentrated along the Pacific and Atlantic seaboard of the United States, where the value is about 25% greater than the global mean, even for the case of a partial collapse.
                Bookmark

                Author and article information

                Journal
                The Cryosphere
                The Cryosphere
                Copernicus GmbH
                1994-0424
                2014
                August 06 2014
                : 8
                : 4
                : 1445-1456
                Article
                10.5194/tc-8-1445-2014
                036de7d6-daec-4962-835b-aface08cdc8d
                © 2014

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article