5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantification of On-Farm Pomegranate Fruit Postharvest Losses and Waste, and Implications on Sustainability Indicators: South African Case Study

      , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While there is a growing body of scientific knowledge on improved techniques and procedures for the production and handling of quality pomegranate fruit to meet market demand, little is known about the magnitude of losses that occur at the farm and post-farmgate. This study revealed the amount of pomegranate fruit lost on the farm and the causes of loss and estimated the impacts of losses. The direct measurement method, which involved sorting and counting of individual fruit, was used since physical identification of the causes of fruit losses on individual fruit was necessary for data collection. Furthermore, qualitative data were collected by physical observation during harvesting and interaction with farm workers. At the case study farm in Wellington, Western Cape Province of South Africa, a range of 15.3–20.1% of the harvested crop was considered lost, as the quality fell below marketable standards for retail sales. This amounted to an average of 117.76 tonnes of pomegranate fruit harvested per harvest season in the case study farm, which is removed from the value chain and sold mainly at a low value for juicing and other purposes and translates to an estimated R10.5 million ($618,715.34) economic loss to the farmer. Environmental factors are the main causes of on-farm fruit losses. In the three pomegranate cultivars studied, sunburn and crack were identified as the leading cause of fruit loss, accounting for about 43.9% of all on-farm fruit losses. The lost fiber, carbohydrate, protein, iron and ascorbic acid contents associated with lost fruit were estimated to meet the daily recommended nutrition intake of 2, 9, 4, 2 and 24 people, respectively. Strategies to control and reduce pomegranate fruit losses and waste at the farm level should focus on environmental factors and mechanical damage since they account for the highest sources of fruit losses. This will ensure improved revenue to farmers, sustainable use of natural resources, reduction of the environmental impacts of the fruit industry, and more availability of quality fruit for nutritional security.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          The green, blue and grey water footprint of crops and derived crop products

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization: Fruit and vegetable waste…

            Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health-promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by-products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                May 2021
                May 06 2021
                : 13
                : 9
                : 5168
                Article
                10.3390/su13095168
                0370949d-f0dc-4684-8ea0-8ca751244d9f
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article