87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of the most common English words and phrases over the centuries

      research-article
      *
      Journal of the Royal Society Interface
      The Royal Society
      Zipf's law, preferential attachment, English language

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By determining the most common English words and phrases since the beginning of the sixteenth century, we obtain a unique large-scale view of the evolution of written text. We find that the most common words and phrases in any given year had a much shorter popularity lifespan in the sixteenth century than they had in the twentieth century. By measuring how their usage propagated across the years, we show that for the past two centuries, the process has been governed by linear preferential attachment. Along with the steady growth of the English lexicon, this provides an empirical explanation for the ubiquity of Zipf's law in language statistics and confirms that writing, although undoubtedly an expression of art and skill, is not immune to the same influences of self-organization that are known to regulate processes as diverse as the making of new friends and World Wide Web growth.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical mechanics of complex networks

            Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Matthew Effect in Science: The reward and communication systems of science are considered.

              R K Merton (1968)
              This account of the Matthew effect is another small exercise in the psychosociological analysis of the workings of science as a social institution. The initial problem is transformed by a shift in theoretical perspective. As originally identified, the Matthew effect was construed in terms of enhancement of the position of already eminent scientists who are given disproportionate credit in cases of collaboration or of independent multiple discoveries. Its significance was thus confined to its implications for the reward system of science. By shifting the angle of vision, we note other possible kinds of consequences, this time for the communication system of science. The Matthew effect may serve to heighten the visibility of contributions to science by scientists of acknowledged standing and to reduce the visibility of contributions by authors who are less well known. We examine the psychosocial conditions and mechanisms underlying this effect and find a correlation between the redundancy function of multiple discoveries and the focalizing function of eminent men of science-a function which is reinforced by the great value these men place upon finding basic problems and by their self-assurance. This self-assurance, which is partly inherent, partly the result of experiences and associations in creative scientific environments, and partly a result of later social validation of their position, encourages them to search out risky but important problems and to highlight the results of their inquiry. A macrosocial version of the Matthew principle is apparently involved in those processes of social selection that currently lead to the concentration of scientific resources and talent (50).
                Bookmark

                Author and article information

                Journal
                J R Soc Interface
                J R Soc Interface
                RSIF
                royinterface
                Journal of the Royal Society Interface
                The Royal Society
                1742-5689
                1742-5662
                7 December 2012
                25 July 2012
                25 July 2012
                : 9
                : 77
                : 3323-3328
                Affiliations
                Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
                Author notes
                Article
                rsif20120491
                10.1098/rsif.2012.0491
                3481586
                22832364
                03761f4e-c7ef-4307-9fdd-29615c91e0c0
                This journal is © 2012 The Royal Society

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 June 2012
                : 2 July 2012
                Categories
                1004
                120
                Research Articles

                Life sciences
                zipf's law,preferential attachment,english language
                Life sciences
                zipf's law, preferential attachment, english language

                Comments

                Comment on this article