Blog
About

5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cost-effectiveness analysis of a fixed-dose combination of indacaterol and glycopyrronium as maintenance treatment for COPD

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The aim of this study was to evaluate the cost-effectiveness of the long-acting beta-2 agonist (LABA)/long-acting muscarinic antagonist (LAMA) dual bronchodilator indacaterol/glycopyrronium (IND/GLY) as a maintenance treatment for COPD patients from the perspective of health care payer in Taiwan.

          Patients and methods

          We adopted a patient-level simulation model, which included a cohort of COPD patients aged ≥40 years. The intervention used in the study was the treatment using IND/GLY, and comparators were tiotropium or salmeterol/fluticasone combination (SFC). Data related to the efficacy of drugs, incidence of exacerbation, and utility were obtained from clinical studies. Direct costs were estimated from claims data based on the severity of COPD. The cycle length was 6 months (to match forced expiratory volume in 1 second [FEV 1] data), and the time horizons included 1, 3, 5, 10 years, and lifetime. Deterministic and probabilistic sensitivity analyses were conducted to test the robustness of the model results. Costs were expressed in US dollars with a discount rate of 3.0%.

          Results

          Compared to tiotropium and SFC, the incremental cost-effectiveness ratios (ICERs) per quality-adjusted life year (QALY) gained of patients treated with IND/GLY were US$5,987 and US$14,990, respectively. One-way sensitivity analysis revealed that the improvement in FEV 1 provided by IND/GLY, the distribution of patients with regard to the severity of COPD, and acute exacerbation rate ratio were the key drivers behind cost-effectiveness. Adopting a willingness to pay of US$60,000 per QALY gained as the threshold, there was a 98.7% probability that IND/GLY was cost-effective compared to tiotropium. Similarly, there was a 99.9% probability that IND/GLY was cost-effective compared to SFC.

          Conclusion

          As a maintenance treatment for COPD, we consider the dual bronchodilator IND/GLY as a cost-effective strategy when compared to either tiotropium or SFC.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study

          Plausible projections of future mortality and disability are a useful aid in decisions on priorities for health research, capital investment, and training. Rates and patterns of ill health are determined by factors such as socioeconomic development, educational attainment, technological developments, and their dispersion among populations, as well as exposure to hazards such as tobacco. As part of the Global Burden of Disease Study (GBD), we developed three scenarios of future mortality and disability for different age-sex groups, causes, and regions. We used the most important disease and injury trends since 1950 in nine cause-of-death clusters. Regression equations for mortality rates for each cluster by region were developed from gross domestic product per person (in international dollars), average number of years of education, time (in years, as a surrogate for technological change), and smoking intensity, which shows the cumulative effects based on data for 47 countries in 1950-90. Optimistic, pessimistic, and baseline projections of the independent variables were made. We related mortality from detailed causes to mortality from a cause cluster to project more detailed causes. Based on projected numbers of deaths by cause, years of life lived with disability (YLDs) were projected from different relation models of YLDs to years of life lost (YLLs). Population projections were prepared from World Bank projections of fertility and the projected mortality rates. Life expectancy at birth for women was projected to increase in all three scenarios; in established market economies to about 90 years by 2020. Far smaller gains in male life expectancy were projected than in females; in formerly socialist economies of Europe, male life expectancy may not increase at all. Worldwide mortality from communicable maternal, perinatal, and nutritional disorders was expected to decline in the baseline scenario from 17.2 million deaths in 1990 to 10.3 million in 2020. We projected that non-communicable disease mortality will increase from 28.1 million deaths in 1990 to 49.7 million in 2020. Deaths from injury may increase from 5.1 million to 8.4 million. Leading causes of disability-adjusted life years (DALYs) predicted by the baseline model were (in descending order): ischaemic heart disease, unipolar major depression, road-traffic accidents, cerebrovascular disease, chronic obstructive pulmonary disease, lower respiratory infections, tuberculosis, war injuries, diarrhoeal diseases, and HIV. Tobacco-attributable mortality is projected to increase from 3.0 million deaths in 1990 to 8.4 million deaths in 2020. Health trends in the next 25 years will be determined mainly by the ageing of the world's population, the decline in age-specific mortality rates from communicable, maternal, perinatal, and nutritional disorders, the spread of HIV, and the increase in tobacco-related mortality and disability. Projections, by their nature, are highly uncertain, but we found some robust results with implications for health policy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dual bronchodilation with QVA149 versus single bronchodilator therapy: the SHINE study

            Introduction Bronchodilators are the cornerstone of symptomatic management of chronic obstructive pulmonary disease (COPD) [1]. Current guidelines recommend treatment with one or more long-acting bronchodilators for patients with moderate-to-very-severe COPD [1]. The use of two bronchodilators with different mechanisms of action has been shown to provide additional benefits compared with either given alone, without significantly increasing side-effects [2, 3]. Both indacaterol, a long-acting β2-agonist (LABA), and tiotropium, a long-acting muscarinic antagonist (LAMA), are effective as monotherapies and have acceptable safety profiles [4, 5]. In addition, their concurrent use has been shown to provide superior bronchodilation and improvement in air trapping compared with tiotropium alone [6]. Glycopyrronium (NVA237) is a recently approved once-daily LAMA for the treatment of moderate-to-severe COPD, and has been shown to provide rapid and sustained improvements in lung function, dyspnoea, health status, exercise endurance and exacerbation risk, with improvements similar to tiotropium and a safety profile similar to placebo [7–9]. QVA149 is a novel once-daily dual bronchodilator containing a fixed dose of the LABA indacaterol with the LAMA glycopyrronium. In patients with COPD, QVA149 has demonstrated rapid and sustained bronchodilation, which is significantly superior to that observed with indacaterol alone or placebo, and it is well tolerated, with an adverse event profile similar to placebo [10, 11]. In the current SHINE study, we sought to confirm the “rule of combination” [12] that dual bronchodilation with QVA149 will provide additional therapeutic benefits compared to the monocomponents indacaterol and glycopyrronium, as well as compared to tiotropium, the current gold standard of care, and placebo in patients with moderate-to-severe COPD. Methods Study design The study was a multicentre, randomised, double-blind, parallel-group, placebo- and active-controlled 26-week trial, and comprised a washout, run-in and the 26-week treatment period, with 30 days of follow-up after the last visit (fig. 1). The first patient’s first visit was September 21, 2010, and the last patient’s last visit was February 10, 2012. Patients receiving fixed-dose combinations of LABA/inhaled corticosteroid (ICS) were switched to an equivalent dose of ICS monotherapy. After screening, eligible patients were randomised in a 2:2:2:2:1 ratio (via interactive response technology) to treatment with double-blind QVA149 (indacaterol 110 μg/glycopyrronium 50 μg), indacaterol 150 μg, glycopyrronium 50 μg, open-label tiotropium 18 μg or placebo. All medications were administered once daily in the morning via the Breezhaler® (Novartis Pharma AG, Stein, Switzerland) device except for tiotropium, which was administered via the HandiHaler® (Boehringer Ingelheim, Ingelheim, Germany) device. A salbutamol/albuterol pressurised metered-dose inhaler was provided as rescue medication. Additional details of the study design and randomisation/blinding procedures are included in the online supplementary material. Figure 1– The SHINE study design. Patients Participants were aged ≥40 years, had moderate-to-severe stable COPD (stage II or III according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2008 criteria [13]) and a smoking history of ≥10 pack-years. At screening, they were required to have a post-bronchodilator forced expiratory volume in 1 s (FEV1) ≥30% and 100 mL or >200 mL in trough FEV1 at week 26). Figure 3– Trough forced expiratory volume in 1 s (FEV1) a) at week 26 and b) over the entire 26-week treatment period. a) Data are presented as least squares mean±se. One-sided adjusted p-values are presented for comparisons in the statistical gatekeeping procedure and two-sided p-values are presented for all other comparisons. b) QVA149 was superior to all active treatments and placebo at all timepoints (all p 30 days after the last dose of study drug but before the end of the follow-up visit (indacaterol (n = 1): pneumonia and glycopyrronium (n = 1): colon cancer). None of the deaths were considered by the investigator to be related to the study drug. Discussion Combining two bronchodilators with different mechanisms of action has the potential to enhance efficacy compared with single agents without increasing adverse effects [2, 3]. In the SHINE study, dual bronchodilation with QVA149, administered once-daily, provided superior improvements in lung function compared with its monocomponents indacaterol and glycopyrronium given alone, as well as tiotropium and placebo. Improvement in the primary end-point, trough FEV1 was both statistically and clinically significant (considered to be ≥100 mL in COPD) over placebo, and versus active comparators it approached clinical significance. Furthermore, lung function improvements with QVA149 were superior at their peak and, in a subset of patients monitored over 24 h, throughout the day. Similar trends to the overall population were observed in subgroup analyses. Improvements in lung function versus placebo were greater in patients with moderate versus severe COPD; however, statistically and clinically significant improvements in trough FEV1 were seen for both moderate and severe patient subgroups. Improvements in lung function were not influenced by patient age, sex or concurrent use of ICS. Furthermore, they were maintained throughout the 26-week treatment period, and the onset of action of QVA149 was confirmed to be rapid, similar to that of a short-acting β2-agonist. These beneficial effects of QVA149 on lung function were paralleled by statistically significant improvements in other clinically important end-points: dyspnoea, health status and patient symptoms and reduced rescue medication use. QVA149 was significantly superior to placebo and tiotropium for both the TDI and SGRQ total score at week 26; no other active treatment achieved a significant improvement in SGRQ versus placebo. Furthermore, a significantly higher proportion of patients on QVA149 achieved a clinically meaningful improvement in TDI (≥1 unit) and SGRQ (≥4 units) versus placebo and tiotropium. QVA149 was well tolerated over the 26-week study with an adverse event profile similar to that of placebo. In addition, no actual or potential safety signals were observed with the combination compared with the single bronchodilators. Despite previous concerns that LABAs and LAMAs may present a risk of cardiovascular events [14–17], the CCV safety profile of this LABA/LAMA combination was similar to that of placebo. The results of this study are consistent with those of several published studies that have investigated the efficacy and safety of free combinations of LABAs and LAMAs in patients with COPD [6, 18–20], but this is the first to demonstrate the additive benefit of the two classes of long-acting bronchodilator in a combination device. Previous studies have been limited by different durations of actions of the LAMA and LABA components (i.e. formoterol or salmeterol having to be administered twice daily). Our study confirms that the additive benefit of indacaterol and glycopyrronium persists over 24 h, without tachyphylaxis, providing further support for the use of dual bronchodilators. The present study supports the GOLD 2013 strategy alternative choice recommendation that the addition of a second bronchodilator in patients with moderate-to-severe COPD (groups B–D) may optimise symptom benefit [1]. In “low-risk” patients who remain symptomatic on a single bronchodilator (group B), the combination of indacaterol plus glycopyrronium in a single inhaler may lead to significantly improved outcomes compared with LABA or LAMA monotherapy. In “high-risk” patients with severe or very severe COPD (high symptom level and historical exacerbation frequency; groups C and D in the GOLD management strategy [1]) a LABA plus a LAMA is recommended as an alternative to a LABA/ICS combination (group C) or ICS plus LABA and/or LAMA (group D). In comparing LABA plus LAMA and LABA/ICS combination, improvements in lung function achieved with two bronchodilators are expected to be numerically superior to the single bronchodilator in LABA/ICS combinations. In the TORCH (Towards a Revolution in COPD Health) study, combination therapy achieved 50 mL and 44 mL improvement in FEV1 versus salmeterol and fluticasone propionate alone, respectively; however, the LABA/ICS combination is selected for its demonstrated effect on COPD exacerbations [21]. A real-world analysis has indicated that a high proportion of patients at low risk for exacerbations (groups A or B) may be receiving ICS inappropriately [22]. Some patients currently receiving combined LABA/ICS may do better on a LABA/LAMA combination [23]. This would provide dual bronchodilation without the need for ICS treatment, and therefore without the inherent risks of ICS [24], as recommended by the GOLD 2013 strategy [1]. The 26-week ILLUMINATE study supports the use of QVA149 versus LABA/ICS in this population [25]. QVA149 once daily was associated with significant improvements in lung function and dyspnoea versus twice-daily salmeterol/fluticasone. Furthermore, the current SHINE study provides evidence for the additive benefit and safety of a LABA/LAMA combination, demonstrating that QVA149 is superior for most end-points over tiotropium, which is currently recommended as an alternative to LABA/ICS combination, alone or in combination with a LABA. Features of QVA149 that may help to reduce nonadherence to treatment, which remains high in COPD [26], are the convenience of once-daily dosing [27] which is generally preferred by patients [26, 28, 29] and the need for only a single inhaler. Furthermore, the rapid onset of action may be evident to patients as they wake at the nadir of their daily lung function cycle when symptoms are most prominent [30]. However, these advantages of a LABA/LAMA combination and QVA149 are speculative and need to be tested in further prospective studies. We acknowledge several limitations in our study. Firstly, with regards to the study population, we did not intend to include the full range of COPD severities that might benefit from dual long-acting bronchodilators. Since our main objective was to assess the incremental benefit of two bronchodilators in combination (versus one), we elected to recruit only patients with moderate-to-severe COPD. As in our study, results of studies involving LABA/ICS combinations (e.g. the TORCH study [21]) and tiotropium (e.g. the UPLIFT study [31]), have confirmed that patients with moderate disease showed the greatest improvements in lung function. The apparent high reversibility of FEV1 (20%) is attributable to the fact that both salbutamol and ipratropium were administered during this test, and reversibility of this magnitude is not unusual in moderate COPD. We went to lengths to exclude patients with asthma (inclusion criteria: age of onset of symptoms >40 years, absence of rhinitis and blood eosinophil count of <600 cells·mm−3 (see the online supplementary material)). Finally, unlike most COPD studies, which enrich for patients with exacerbations, in our study we excluded patients with a recent COPD exacerbation (in the previous 6 weeks) to reduce the impact of withdrawal due to exacerbations on the primary spirometric end-point. For this reason, along with the fact that patients had milder disease and the study was relatively short (6 months), the present study does not provide useful information on the effect of QVA149 on COPD exacerbations, which has been examined in studies of appropriate design (SPARK study [32]). A further limitation of our study is the difficulty in evaluating the clinical significance of spirometric and other clinical end-points (TDI and SGRQ) versus active (monocomponent) treatments. Although statistically superior to all monocomponents, QVA149 attained the MCID for only some comparisons (fig. 3 and online supplementary table S3). However, it should be noted that the MCID for a trough FEV1 of 100 mL is generally used for comparisons versus placebo, and that the mean improvements of 70, 80 and 90 mL versus indacaterol, glycopyrronium and tiotropium, respectively, approach this threshold value; comparative data for TDI and SGRQ also support this trend. In conclusion, once-daily QVA149 demonstrated superior efficacy compared with placebo, its monocomponents indacaterol and glycopyrronium, and the current standard of care (tiotropium) in patients with moderate-to-severe COPD. QVA149 was also associated with an adverse event profile that was similar to placebo with no additional safety signal compared with monotherapies. This is the first study to demonstrate the advantage of dual bronchodilation with a fixed-dose LABA/LAMA combination, compared with a single bronchodilator in patients with moderate-to-severe COPD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study.

              Previous studies of lung function in relation to smoking cessation have not adequately quantified the long-term benefit of smoking cessation, nor established the predictive value of characteristics such as airway hyperresponsiveness. In a prospective randomized clinical trial at 10 North American medical centers, we studied 3, 926 smokers with mild-to-moderate airway obstruction (3,818 with analyzable results; mean age at entry, 48.5 yr; 36% women) randomized to one of two smoking cessation groups or to a nonintervention group. We measured lung function annually for 5 yr. Participants who stopped smoking experienced an improvement in FEV(1) in the year after quitting (an average of 47 ml or 2%). The subsequent rate of decline in FEV(1) among sustained quitters was half the rate among continuing smokers, 31 +/- 48 versus 62 +/- 55 ml (mean +/- SD), comparable to that of never-smokers. Predictors of change in lung function included responsiveness to beta-agonist, baseline FEV(1), methacholine reactivity, age, sex, race, and baseline smoking rate. Respiratory symptoms were not predictive of changes in lung function. Smokers with airflow obstruction benefit from quitting despite previous heavy smoking, advanced age, poor baseline lung function, or airway hyperresponsiveness.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                04 April 2018
                : 13
                : 1079-1088
                Affiliations
                [1 ]Section of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
                [2 ]National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
                [3 ]Institute of Health Policy and Management, National Taiwan University, Taipei, Taiwan, Republic of China
                Author notes
                Correspondence: Ming-Chin Yang, Institute of Health Policy and Management, College of Public Health, National Taiwan University, Room 637, No 17, Xu-Zhou Road, Taipei 10055, Taiwan, Republic of China, Tel +886 2 3366 8067, Fax +886 2 2343 4200, Email mcyang637@ 123456ntu.edu.tw
                Elise Chia-Hui Tan, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Room 528, No 155-1, Section 2, Linong Street, Taipei 11221, Taiwan, Republic of China, Tel +886 2 2820 1999, Fax +886 2 2825 0743, Email elisetam.g@ 123456gmail.com
                [*]

                These authors contributed equally to this work

                Article
                copd-13-1079
                10.2147/COPD.S159103
                5894684
                © 2018 Chan et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article