27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sera from Children with Autism Induce Autistic Features Which Can Be Rescued with a CNTF Small Peptide Mimetic in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: not found
          • Article: not found

          Depression: a new animal model sensitive to antidepressant treatments.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Behavioural phenotyping assays for mouse models of autism.

            Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100-150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of autism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study.

              To quantify developmental abnormalities in cerebral and cerebellar volume in autism. The authors studied 60 autistic and 52 normal boys (age, 2 to 16 years) using MRI. Thirty autistic boys were diagnosed and scanned when 5 years or older. The other 30 were scanned when 2 through 4 years of age and then diagnosed with autism at least 2.5 years later, at an age when the diagnosis of autism is more reliable. Neonatal head circumferences from clinical records were available for 14 of 15 autistic 2- to 5-year-olds and, on average, were normal (35.1 +/- 1.3 cm versus clinical norms: 34.6 +/- 1.6 cm), indicative of normal overall brain volume at birth; one measure was above the 95th percentile. By ages 2 to 4 years, 90% of autistic boys had a brain volume larger than normal average, and 37% met criteria for developmental macrencephaly. Autistic 2- to 3-year-olds had more cerebral (18%) and cerebellar (39%) white matter, and more cerebral cortical gray matter (12%) than normal, whereas older autistic children and adolescents did not have such enlarged gray and white matter volumes. In the cerebellum, autistic boys had less gray matter, smaller ratio of gray to white matter, and smaller vermis lobules VI-VII than normal controls. Abnormal regulation of brain growth in autism results in early overgrowth followed by abnormally slowed growth. Hyperplasia was present in cerebral gray matter and cerebral and cerebellar white matter in early life in patients with autism.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 March 2015
                2015
                : 10
                : 3
                : e0118627
                Affiliations
                [1 ]Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
                [2 ]Neural and Behavioral Science Graduate Program, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
                [3 ]SUNY Downstate/NYSIBR Center for Developmental Neuroscience (CDN), Staten Island, New York, United States of America
                Univeristy of Miami, UNITED STATES
                Author notes

                Competing Interests: This study was partly supported by EVER NeuroPharma GmbH, Unterach, Austria. Based on studies described in this manuscript, the authors submitted a patent application to the United States Patent and Trademark Office on 12/11/2014, entitled: “Treatment of Autism Spectrum Disorders with Ciliary Neurotrophic Factor Peptide Mimetic”; application number US62/083,570; Inventors: Khalid Iqbal and Inge Grundke-Iqbal. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: SFK IGI KI. Performed the experiments: SFK MDCC MA JB FF. Analyzed the data: SFK MDCC MA JB. Contributed reagents/materials/analysis tools: SFK IGI KI. Wrote the paper: SFK KI.

                Article
                PONE-D-14-49217
                10.1371/journal.pone.0118627
                4359103
                25769033
                037ca809-240d-4a42-9889-3cb17bfee2ca
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 5 November 2014
                : 21 January 2015
                Page count
                Figures: 6, Tables: 2, Pages: 32
                Funding
                This work was supported in part by the New York State Office of People with Developmental Disabilities and EVER NeuroPharma GmbH, Unterach, Austria. S.F. Kazim is supported by SUNY Downstate/NYSIBR Center for Developmental Neuroscience (CDN) Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article