27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D Hierarchical Rutile TiO 2 and Metal-free Organic Sensitizer Producing Dye-sensitized Solar Cells 8.6% Conversion Efficiency

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of ‘next generation’ microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO 2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO 2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells.

          A new series of panchromatic ruthenium(II) sensitizers derived from carboxylated terpyridyl complexes of tris-thiocyanato Ru(II) have been developed. Black dye containing different degrees of protonation [(C(2)H(5))(3)NH][Ru(H(3)tcterpy)(NCS)(3)] 1, [(C(4)H(9))(4)N](2)[Ru(H(2)tcterpy)(NCS)(3)] 2, [(C(4)H(9))(4)N](3)[Ru(Htcterpy)(NCS)(3)] 3, and [(C(4)H(9))(4)N](4)[Ru(tcterpy)(NCS)(3)] 4 (tcterpy = 4,4',4' '-tricarboxy-2,2':6',2' '-terpyridine) have been synthesized and fully characterized by UV-vis, emission, IR, Raman, NMR, cyclic voltammetry, and X-ray diffraction studies. The crystal structure of complex 2 confirms the presence of a Ru(II)N6 central core derived from the terpyridine ligand and three N-bonded thiocyanates. Intermolecular H-bonding between carboxylates on neighboring terpyridines gives rise to 2-D H-bonded arrays. The absorption and emission maxima of the black dye show a bathochromic shift with decreasing pH and exhibit pH-dependent excited-state lifetimes. The red-shift of the emission maxima is due to better pi-acceptor properties of the acid form that lowers the energy of the CT excited state. The low-energy metal-to-ligand charge-transfer absorption band showed marked solvatochromism due to the presence of thiocyanate ligands. The Ru(II)/(III) oxidation potential of the black dye and the ligand-based reduction potential shifted cathodically with decreasing number of protons and showed more reversible character. The adsorption of complex 3 from methoxyacetonitrile solution onto transparent TiO(2) films was interpreted by a Langmuir isotherm yielding an adsorption equilibrium constant, K(ads), of (1.0 +/- 0.3) x 10(5) M(-1). The amount of dye adsorbed at monolayer saturation was (n(alpha) = 6.9 +/- 0.3) x 10(-)(8) mol/mg of TiO(2), which is around 30% less than that of the cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complex. The black dye, when anchored to nanocrystalline TiO(2) films achieves very efficient sensitization over the whole visible range extending into the near-IR region up to 920 nm, yielding over 80% incident photon-to-current efficiencies (IPCE). Solar cells containing the black dye were subjected to analysis by a photovoltaic calibration laboratory (NREL, U.S.A.) to determine their solar-to-electric conversion efficiency under standard AM 1.5 sunlight. A short circuit photocurrent density obtained was 20.5 mA/cm(2), and the open circuit voltage was 0.72 V corresponding to an overall conversion efficiency of 10.4%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.

            Dye-sensitized solar cells (DSSCs) made from oriented, one-dimensional semiconductor nanostructures such as nanorods, nanowires, and nanotubes are receiving attention because direct connection of the point of photogeneration with the collection electrode using such structures may improve the cell performance. Specifically, oriented single-crystalline TiO(2) nanorods or nanowires on a transparent conductive substrate would be most desirable, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a facile, hydrothermal method was developed for the first time to grow oriented, single-crystalline rutile TiO(2) nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. The diameter, length, and density of the nanorods could be varied by changing the growth parameters, such as growth time, growth temperature, initial reactant concentration, acidity, and additives. The epitaxial relation between the FTO substrate and rutile TiO(2) with a small lattice mismatch plays a key role in driving the nucleation and growth of the rutile TiO(2) nanorods on FTO. With TiCl(4)-treatment, a light-to-electricity conversion efficiency of 3% could be achieved by using 4 mum-long TiO(2) nanorod films as the photoanode in a DSSC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.

              Electrochemical impedance spectroscopy (EIS) has been performed to investigate electronic and ionic processes in dye-sensitized solar cells (DSC). A theoretical model has been elaborated, to interpret the frequency response of the device. The high-frequency feature is attributed to the charge transfer at the counter electrode while the response in the intermediate-frequency region is associated with the electron transport in the mesoscopic TiO2 film and the back reaction at the TiO2/electrolyte interface. The low-frequency region reflects the diffusion in the electrolyte. Using an appropriate equivalent circuit, the electron transport rate and electron lifetime in the mesoscopic film have been derived, which agree with the values derived from transient photocurrent and photovoltage measurements. The EIS measurements show that DSC performance variations under prolonged thermal aging result mainly from the decrease in the lifetime of the conduction band electron in the TiO2 film.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                29 August 2014
                2014
                : 4
                : 5769
                Affiliations
                [1 ]Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong , NSW 2522, Australia
                [2 ]Graduate Institute for Ferrous Technology, Pohang University of Science and Technology , San 31, Hyoja-dong, Pohang 790-784, Republic of Korea
                [3 ]Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM, University of Wollongong , NSW 2522, Australia
                [4 ]Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane, QLD 4072, Australia
                Author notes
                Article
                srep05769
                10.1038/srep05769
                5385835
                25167837
                037e7f6a-1922-47d2-be4d-1f3dae354641
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 07 February 2014
                : 14 April 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article