5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heart failure is a global health problem that affects approximately 26 million people worldwide. As conventional diagnostic techniques for heart failure have been in practice with various limitations, it is necessary to develop novel diagnostic models to supplement existing methods. With advances and improvements in gene sequencing technology in recent years, more heart failure-related genes have been identified. Using existing gene expression data in the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) of heart failure and identified six key genes ( HMOX2, SERPINA3, LCN6, CSDC2, FREM1, and ZMAT1) by random forest classifier. Of these genes, CSDC2, FREM1, and ZMAT1 have never been associated with heart failure. We also successfully constructed a new diagnostic model of heart failure using an artificial neural network and verified its diagnostic efficacy in public datasets.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          clusterProfiler: an R package for comparing biological themes among gene clusters.

          Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            limma powers differential expression analyses for RNA-sequencing and microarray studies

            limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              pROC: an open-source package for R and S+ to analyze and compare ROC curves

              Background Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. Results With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC. Conclusions pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                31 December 2020
                26 December 2020
                : 12
                : 24
                : 26221-26235
                Affiliations
                [1 ]Peking University Fifth School of Clinical Medicine, Beijing 100730, P.R. China
                [2 ]Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Tong Zou; email: zoutong2766@bjhmoh.cn
                Article
                202405 202405
                10.18632/aging.202405
                7803554
                33401250
                03927238-a4d2-4b06-8ef6-019c3cc702db
                Copyright: © 2020 Tian et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 July 2020
                : 29 September 2020
                Categories
                Research Paper

                Cell biology
                difference analysis,heart failure,artificial neural network,random forest
                Cell biology
                difference analysis, heart failure, artificial neural network, random forest

                Comments

                Comment on this article