20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Serum Copeptin, NLPR3, and suPAR Levels among Patients with Autosomal-Dominant Polycystic Kidney Disease with and without Impaired Renal Function

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The pathophysiology of renal disease progression in autosomal-dominant polycystic kidney disease (ADPKD) involves not only cystogenesis but also endothelial dysfunction, leading to the activation of inflammatory and fibrotic pathways. This study evaluated the levels of biomarkers related to osmoregulation, immune system activation, and tubular injury in ADPKD patients with impaired or preserved renal function. Methods: This study included 26 ADPKD patients with modestly impaired renal function (estimated glomerular filtration rate [eGFR] 45–70 mL/min/1.73 m<sup>2</sup>; Group A), 26 age- and sex-matched ADPKD patients with relatively preserved renal function (eGFR >70 mL/min/1.73 m<sup>2</sup>; Group B), and 26 age- and sex-matched controls (Group C). Serum levels of copeptin, the inflammasome nucleotide-binding and oligomerization domain-like receptors pyrin domain-containing protein 3 (NLRP3), and soluble urokinase-type plasminogen activator receptor (suPAR) were measured with ELISA techniques. Results: Patients in Group A had higher levels of copeptin (median [interquartile range]: 50.44 [334.85] pg/mL), NLRP3 (5.86 [3.89] ng/mL), and suPAR (390.05 [476.53] pg/mL) compared to patients in Group B (32.38 [58.33], p = 0.042; 2.42 [1.96], p < 0.001; and 313.78 [178.85], p = 0.035, respectively) and Group C (6.75 [6.43]; 1.09 [0.56]; and 198.30 [28.53], respectively; p < 0.001 for all comparisons). Levels of all studied markers were also significantly higher in Group B patients compared to controls ( p < 0.001), despite having similar eGFR. In patients with ADPKD, all studied biomarkers were correlated positively with asymmetric-dimethylarginine (ADMA) and endocan levels, and negatively with eGFR. ADMA and endocan levels were the only parameters independently associated with increased copeptin levels. Conclusions: This study showed that ADPKD patients with impaired and preserved renal function had higher copeptin, NLRP3, and suPAR levels than controls. Such findings support that cystogenesis and inflammation are associated with endothelial dysfunction, even in the early stages of ADKPD.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A new equation to estimate glomerular filtration rate.

          Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values. To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates. Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006. 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES. GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age. In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%). The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR. The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use. National Institute of Diabetes and Digestive and Kidney Diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NLRP3 inflammasome: molecular activation and regulation to therapeutics

            NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC).

                Bookmark

                Author and article information

                Journal
                CRM
                Cardiorenal Med
                10.1159/issn.1664-5502
                Cardiorenal Medicine
                S. Karger AG
                1664-3828
                1664-5502
                2020
                December 2020
                17 November 2020
                : 10
                : 6
                : 440-451
                Affiliations
                [_a] aDepartment of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
                [_b] bDepartment of Respiratory Medicine, Papanikolaou General Hospital, Thessaloniki, Greece
                [_c] cSection of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
                [_d] dDepartment of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
                Author notes
                *Pantelis A. Sarafidis, Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, GR–54642 Thessaloniki (Greece), psarafidis11@yahoo.gr
                Author information
                https://orcid.org/0000-0002-9174-4018
                Article
                510834 Cardiorenal Med 2020;10:440–451
                10.1159/000510834
                33202410
                03987a35-be06-47f6-ac4a-0a0030b781be
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 13 May 2020
                : 07 August 2020
                Page count
                Figures: 3, Tables: 2, Pages: 12
                Categories
                Research Article

                Cardiovascular Medicine,Nephrology
                Copeptin,Autosomal-dominant polycystic kidney disease (ADPKD),NLRP3,suPAR,Endothelial dysfunction,Inflammation

                Comments

                Comment on this article