150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      APOBEC3G Polymorphism as a Selective Barrier to Cross-Species Transmission and Emergence of Pathogenic SIV and AIDS in a Primate Host

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular restriction factors, which render cells intrinsically resistant to viruses, potentially impose genetic barriers to cross-species transmission and emergence of viral pathogens in nature. One such factor is APOBEC3G. To overcome APOBEC3G-mediated restriction, many lentiviruses encode Vif, a protein that targets APOBEC3G for degradation. As with many restriction factor genes, primate APOBEC3G displays strong signatures of positive selection. This is interpreted as evidence that the primate APOBEC3G locus reflects a long-term evolutionary “arms-race” between retroviruses and their primate hosts. Here, we provide direct evidence that APOBEC3G has functioned as a barrier to cross-species transmission, selecting for viral resistance during emergence of the AIDS-causing pathogen SIVmac in captive colonies of Asian macaques in the 1970s. Specifically, we found that rhesus macaques have multiple, functionally distinct APOBEC3G alleles, and that emergence of SIVmac and simian AIDS required adaptation of the virus to evade APOBEC3G-mediated restriction. Our evidence includes the first comparative analysis of APOBEC3G polymorphism and function in both a reservoir and recipient host species (sooty mangabeys and rhesus macaques, respectively), and identification of adaptations unique to Vif proteins of the SIVmac lineage that specifically antagonize rhesus APOBEC3G alleles. By demonstrating that interspecies variation in a known restriction factor selected for viral counter-adaptations in the context of a documented case of cross-species transmission, our results lend strong support to the evolutionary “arms-race” hypothesis. Importantly, our study confirms that APOBEC3G divergence can be a critical determinant of interspecies transmission and emergence of primate lentiviruses, including viruses with the potential to infect and spread in human populations.

          Author Summary

          APOBEC3G is a host factor that can inhibit replication of primate lentiviruses, including HIV-1, HIV-2, and the related simian immunodeficiency viruses (SIVs) of African primates. As a consequence, primate lentiviruses encode a protein, called Vif, which can induce degradation of APOBEC3G. Given its antiviral role, APOBEC3G may be an important genetic barrier to interspecies jumping of primate lentiviruses. To study this possibility, we asked whether APOBEC3G affected transmission of SIV from sooty mangabeys (SIVsm) to rhesus macaques and subsequent emergence of pathogenic SIVmac in the 1970s. We found that APOBEC3G of sooty mangabeys and rhesus macaques have divergent protein sequences, and that the Vif proteins of SIVsm (Vif-SIVsm) cannot counteract rhesus macaque APOBEC3G. We mapped Vif-SIVsm resistance to a specific substitution in the N-terminal domain of rhesus APOBEC3G, in which a highly conserved tyrosine is replaced by leucine-arginine (Y→LR). We also identified a viral counter-adaptation, found in the Vif proteins of all SIVmac strains, which specifically confers the ability to antagonize APOBEC3G of rhesus macaques. This change was most likely selected during adaptation of SIV to its new host. Together, these results demonstrate that APOBEC3G can serve as a critical genetic determinant of interspecies transmission of primate immunodeficiency viruses.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

          Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein.

            The HIV-1 accessory protein Vpu counteracts a host factor that restricts virion release from infected cells. Here we show that the interferon-induced cellular protein BST-2/HM1.24/CD317 is such a factor. BST-2 is downregulated from the cell surface by Vpu, and BST-2 is specifically expressed in cells that support the vpu phenotype. Exogenous expression of BST-2 inhibits HIV-1 virion release, while suppression of BST-2 relieves the requirement for Vpu. Downregulation of BST-2 requires both the transmembrane/ion channel domain and conserved serines in the cytoplasmic domain of Vpu. Endogenous BST-2 colocalizes with the HIV-1 structural protein Gag in endosomes and at the plasma membrane, suggesting that BST-2 traps virions within and on infected cells. The unusual structure of BST-2, which includes a transmembrane domain and a lumenal GPI anchor, may allow it to retain nascent enveloped virions on cellular membranes, providing a mechanism of viral restriction counteracted by a specific viral accessory protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120.

              T-20 is a synthetic peptide that potently inhibits replication of human immunodeficiency virus type 1 by interfering with the transition of the transmembrane protein, gp41, to a fusion active state following interactions of the surface glycoprotein, gp120, with CD4 and coreceptor molecules displayed on the target cell surface. Although T-20 is postulated to interact with an N-terminal heptad repeat within gp41 in a trans-dominant manner, we show here that sensitivity to T-20 is strongly influenced by coreceptor specificity. When 14 T-20-naive primary isolates were analyzed for sensitivity to T-20, the mean 50% inhibitory concentration (IC(50)) for isolates that utilize CCR5 for entry (R5 viruses) was 0.8 log(10) higher than the mean IC(50) for CXCR4 (X4) isolates (P = 0. 0055). Using NL4.3-based envelope chimeras that contain combinations of envelope sequences derived from R5 and X4 viruses, we found that determinants of coreceptor specificity contained within the gp120 V3 loop modulate this sensitivity to T-20. The IC(50) for all chimeric envelope viruses containing R5 V3 sequences was 0.6 to 0.8 log(10) higher than that for viruses containing X4 V3 sequences. In addition, we confirmed that the N-terminal heptad repeat of gp41 determines the baseline sensitivity to T-20 and that the IC(50) for viruses containing GIV at amino acid residues 36 to 38 was 1.0 log(10) lower than the IC(50) for viruses containing a G-to-D substitution. The results of this study show that gp120-coreceptor interactions and the gp41 N-terminal heptad repeat independently contribute to sensitivity to T-20. These results have important implications for the therapeutic uses of T-20 as well as for unraveling the complex mechanisms of virus fusion and entry.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2013
                October 2013
                3 October 2013
                : 9
                : 10
                : e1003641
                Affiliations
                [1 ]Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen and Nuremberg, Germany
                [2 ]Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
                [3 ]Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
                [4 ]Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
                [5 ]Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
                [6 ]Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AK WEJ VS. Performed the experiments: AK JSM MO ML. Analyzed the data: AK MO ML VS WEJ. Contributed reagents/materials/analysis tools: KRM. Wrote the paper: AK WEJ. Conducted structural modeling: KRM.

                Article
                PPATHOGENS-D-13-01187
                10.1371/journal.ppat.1003641
                3789815
                24098115
                03ab315f-25cc-40a9-92e0-d24994560dbf
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 May 2013
                : 4 August 2013
                Page count
                Pages: 13
                Funding
                This work was supported by NIH grants AI095092 (WEJ), AI083118 (WEJ), AI089246 (VS), AI064001 (VS) and the Public Health Service Institutional Research Training Award T32 A107647 (ML) ( http://www.nih.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article