14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multilocus genetic profiling to empower drug trials and predict brain atrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Designers of clinical trials for Alzheimer's disease (AD) and mild cognitive impairment (MCI) are actively considering structural and functional neuroimaging, cerebrospinal fluid and genetic biomarkers to reduce the sample sizes needed to detect therapeutic effects. Genetic pre-selection, however, has been limited to Apolipoprotein E (ApoE). Recently discovered polymorphisms in the CLU, CR1 and PICALM genes are also moderate risk factors for AD; each affects lifetime AD risk by ~ 10–20%. Here, we tested the hypothesis that pre-selecting subjects based on these variants along with ApoE genotype would further boost clinical trial power, relative to considering ApoE alone, using an MRI-derived 2-year atrophy rate as our outcome measure. We ranked subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) based on their cumulative risk from these four genes. We obtained sample size estimates in cohorts enriched in subjects with greater aggregate genetic risk. Enriching for additional genetic biomarkers reduced the required sample sizes by up to 50%, for MCI trials. Thus, AD drug trial enrichment with multiple genotypes may have potential implications for the timeliness, cost, and power of trials.

          Highlights

          • ApoE genotype status helps enrich MCI trials, using a structural MRI outcome measure.

          • CLU, PICALM and CR1 risk genes boost potential MCI trial power beyond ApoE alone.

          • CLU, PICALM and CR1 show significant, aggregate effects on TBM maps of brain atrophy.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.

          The past decade has witnessed hundreds of reports declaring or refuting genetic association with putative Alzheimer disease susceptibility genes. This wealth of information has become increasingly difficult to follow, much less interpret. We have created a publicly available, continuously updated database that comprehensively catalogs all genetic association studies in the field of Alzheimer disease (http://www.alzgene.org). We performed systematic meta-analyses for each polymorphism with available genotype data in at least three case-control samples. In addition to identifying the epsilon4 allele of APOE and related effects, we pinpointed over a dozen potential Alzheimer disease susceptibility genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF) with statistically significant allelic summary odds ratios (ranging from 1.11-1.38 for risk alleles and 0.92-0.67 for protective alleles). Our database provides a powerful tool for deciphering the genetics of Alzheimer disease, and it serves as a potential model for tracking the most viable gene candidates in other genetically complex diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models.

            Alzheimer's disease (AD) is associated with impaired clearance of β-amyloid (Aβ) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble Aβ within hours in an apoE-dependent manner. Aβ plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological Aβ clearance mechanisms, resulting in the rapid reversal of a broad range of Aβ-induced deficits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes.

              To determine whether genotypes at CLU, PICALM, and CR1 confer risk for Alzheimer disease (AD) and whether risk for AD associated with these genes is influenced by apolipoprotein E (APOE) genotypes. Association study of AD and CLU, PICALM, CR1, and APOE genotypes. Academic research institutions in the United States, Canada, and Israel. Seven thousand seventy cases with AD, 3055 with autopsies, and 8169 elderly cognitively normal controls, 1092 with autopsies, from 12 different studies, including white, African American, Israeli-Arab, and Caribbean Hispanic individuals. Unadjusted, CLU (odds ratio [OR], 0.91; 95% confidence interval [CI], 0.85-0.96 for single-nucleotide polymorphism [SNP] rs11136000), CR1 (OR, 1.14; 95% CI, 1.07-1.22; SNP rs3818361), and PICALM (OR, 0.89; 95% CI, 0.84-0.94, SNP rs3851179) were associated with AD in white individuals. None were significantly associated with AD in the other ethnic groups. APOE ε4 was significantly associated with AD (ORs, 1.80-9.05) in all but 1 small white cohort and in the Arab cohort. Adjusting for age, sex, and the presence of at least 1 APOE ε4 allele greatly reduced evidence for association with PICALM but not CR1 or CLU. Models with the main SNP effect, presence or absence of APOE ε4, and an interaction term showed significant interaction between presence or absence of APOE ε4 and PICALM. We confirm in a completely independent data set that CR1, CLU, and PICALM are AD susceptibility loci in European ancestry populations. Genotypes at PICALM confer risk predominantly in APOE ε4-positive subjects. Thus, APOE and PICALM synergistically interact.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage (Amst)
                Neuroimage (Amst)
                NeuroImage : Clinical
                Elsevier
                2213-1582
                13 June 2013
                13 June 2013
                2013
                : 2
                : 827-835
                Affiliations
                [a ]Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
                [b ]Mary Easton Center for Alzheimer's Disease Research, UCLA School of Medicine, Los Angeles, CA, USA
                [c ]Dept. of Radiology, Mayo Clinic, Rochester, MN, USA
                [d ]Depts. of Radiology, Medicine and Psychiatry, UCSF, San Francisco, CA, USA
                [e ]Dept. of Veterans Affairs Medical Center, San Francisco, CA, USA
                Author notes
                [* ]Corresponding author at: Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Neuroscience Research Building 225E 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA. Tel.: + 1 310 206 2101; fax: + 1 310 206 5518. thompson@ 123456loni.ucla.edu
                [1]

                Data used in preparing this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include those listed at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

                Article
                S2213-1582(13)00063-6
                10.1016/j.nicl.2013.05.007
                3777716
                24179834
                03b6684e-81fb-43d6-bbd4-59cfad61129a
                © 2013 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 February 2013
                : 14 April 2013
                : 11 May 2013
                Categories
                Article

                alzheimer's disease,neuroimaging,brain atrophy,genetics,genetic risk score,clinical trial enrichment

                Comments

                Comment on this article