11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ginseng Gintonin Attenuates Lead-Induced Rat Cerebellar Impairments during Gestation and Lactation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, improves brain functions and protects neurons from oxidative stress. However, little is known about the effects of gintonin against Pb-induced brain maldevelopment. We investigated the protective effects of gintonin on the developing cerebellum after prenatal and postnatal Pb exposure. Pregnant female rats were randomly divided into three groups: control, Pb (0.3% Pb acetate in drinking water), and Pb plus gintonin (100 mg/kg, p.o.). Blood Pb was increased in dams and pups; gintonin treatment significantly decreased blood Pb. On postnatal day 21, the number of degenerating Purkinje cells was remarkably increased while the number of calbindin-, GAD67-, NMDAR1-, LPAR1-immunoreactive intact Purkinje cells, and GABA transporter 1-immunoreactive pinceau structures were significantly reduced in Pb-exposed offspring. Following Pb exposure, gintonin ameliorated cerebellar degenerative effects, restored increased pro-apoptotic Bax, and decreased anti-apoptotic Bcl2. Gintonin treatment attenuated Pb-induced accumulation of oxidative stress (Nrf2 and Mn-SOD) and inflammation (IL-1β and TNFα,), restoring the decreased cerebellar BDNF and Sirt1. Gintonin ameliorated Pb-induced impairment of myelin basic protein-immunoreactive myelinated fibers of Purkinje cells. Gintonin attenuated Pb-induced locomotor dysfunctions. The present study revealed the ameliorating effects of gintonin against Pb, suggesting the potential use of gintonin as a preventive agent in Pb poisoning during pregnancy and lactation.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pharmacology of ginsenosides: a literature review

          The therapeutic potential of ginseng has been studied extensively, and ginsenosides, the active components of ginseng, are shown to be involved in modulating multiple physiological activities. This article will review the structure, systemic transformation and bioavailability of ginsenosides before illustration on how these molecules exert their functions via interactions with steroidal receptors. The multiple biological actions make ginsenosides as important resources for developing new modalities. Yet, low bioavailability of ginsenoside is one of the major hurdles needs to be overcome to advance its use in clinical settings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult.

            Binding of the transcription factor nuclear factor E2-related factor 2 (Nrf2) to the antioxidant response element (ARE) in neural cells results in the induction of a battery of genes that can coordinate a protective response against a variety of oxidative stressors. In this study, tert-butylhydroquinone (tBHQ) and sulforaphane were used as activators of this pathway. Consistent with previous studies, treatment of primary cortical cultures from ARE reporter mice revealed selective promoter activity in astrocytes. This activation protected neurons from hydrogen peroxide and nonexcitotoxic glutamate toxicity. tBHQ treatment of cultures from Nrf2 knock-out animals resulted in neither ARE activation nor neuroprotection. By reintroducing Nrf2 via infection with a replication-deficient adenovirus (ad), both the genetic response and neuroprotection were rescued. Conversely, infection with adenovirus encoding dominant-negative (DN) Nrf2 (ad-DN-Nrf2) or pretreatment with the selective phosphatidylinositol-3 kinase inhibitor LY294002 inhibited the tBHQ-mediated promoter response and corresponding neuroprotection. Interestingly, the adenoviral infection showed a high selectivity for astrocytes over neurons. In an attempt to reveal some of the cell type-specific changes resulting from ARE activation, cultures were infected with adenovirus encoding green fluorescent protein (GFP) (ad-GFP) or ad-DN-Nrf2 (containing GFP) before tBHQ treatment. A glia-enriched population of GFP-infected cells was then isolated from a population of uninfected neurons using cell-sorting technology. Microarray analysis was used to evaluate potential glial versus neuron-specific contributions to the neuroprotective effects of ARE activation and Nrf2 dependence. Strikingly, the change in neuronal gene expression after tBHQ treatment was dependent on Nrf2 activity in the astrocytes. This suggests that Nrf2-dependent genetic changes alter neuron-glia interactions resulting in neuroprotection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GABA receptors in brain development, function, and injury.

              This review presents a brief overview of the γ-aminobutyric acid (GABA) system in the developing and mature central nervous system (CNS) and its potential connections to pathologies of the CNS. γ-aminobutyric acid (GABA) is a major neurotransmitter expressed from the embryonic stage and throughout life. At an early developmental stage, GABA acts in an excitatory manner and is implicated in many processes of neurogenesis, including neuronal proliferation, migration, differentiation, and preliminary circuit-building, as well as the development of critical periods. In the mature CNS, GABA acts in an inhibitory manner, a switch mediated by chloride/cation transporter expression and summarized in this review. GABA also plays a role in the development of interstitial neurons of the white matter, as well as in oligodendrocyte development. Although the underlying cellular mechanisms are not yet well understood, we present current findings for the role of GABA in neurological diseases with characteristic white matter abnormalities, including anoxic-ischemic injury, periventricular leukomalacia, and schizophrenia. Development abnormalities of the GABAergic system appear particularly relevant in the etiology of schizophrenia. This review also covers the potential role of GABA in mature brain injury, namely transient ischemia, stroke, and traumatic brain injury/post-traumatic epilepsy.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                02 March 2020
                March 2020
                : 10
                : 3
                : 385
                Affiliations
                [1 ]Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; skavet@ 123456konkuk.ac.kr (S.M.N.); phoenix_1st@ 123456naver.com (J.S.S.); xcv3bn@ 123456naver.com (M.C.); ssnahm@ 123456konkuk.ac.kr (S.-S.N.); bjchang@ 123456konkuk.ac.kr (B.-J.C.)
                [2 ]Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; vettman@ 123456konkuk.ac.kr (S.-H.C.); ouddi80@ 123456naver.com (H.-J.C.)
                Author notes
                [* ]Correspondence: synah@ 123456konkuk.ac.kr ; Tel.: +82-2-450-4154
                Article
                biomolecules-10-00385
                10.3390/biom10030385
                7175158
                32131481
                03c4645b-d59a-4c8d-bf9b-8bf38c570bd4
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 February 2020
                : 26 February 2020
                Categories
                Article

                ginseng,gintonin,pregnancy and lactation,cerebellar lead (pb) poisoning,neuroprotection

                Comments

                Comment on this article