12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Brain Myosin V Is a Synaptic Vesicle-associated Motor Protein: Evidence for a Ca 2+-dependent Interaction with the Synaptobrevin–Synaptophysin Complex

      research-article
      ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain myosin V is a member of a widely distributed class of unconventional myosins that may be of central importance to organelle trafficking in all eukaryotic cells. Molecular constituents that target this molecular motor to organelles have not been previously identified. Using a combination of immunopurification, extraction, cross-linking, and coprecipitation assays, we demonstrate that the tail domain of brain myosin V forms a stable complex with the synaptic vesicle membrane proteins, synaptobrevin II and synaptophysin. While myosin V was principally bound to synaptic vesicles during rest, this putative transport complex was promptly disassembled upon the depolarization-induced entry of Ca 2+ into intact nerve endings. Coimmunoprecipitation assays further indicate that Ca 2+ disrupts the in vitro binding of synaptobrevin II to synaptophysin in the presence but not in the absence of Mg 2+. We conclude that hydrophilic forces reversibly couple the myosin V tail to a biochemically defined class of organelles in brain nerve terminals.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.

          The SNARE hypothesis holds that a transport vesicle chooses its target for fusion when a soluble NSF attachment protein (SNAP) receptor on the vesicle (v-SNARE) pairs with its cognate t-SNARE at the target membrane. Three synaptosomal membrane proteins have previously been identified: syntaxin, SNAP-25 (t-SNAREs), and vesicle-associated membrane protein (VAMP) (v-SNARE); all assemble with SNAPs and NSF into 20S fusion particles. We now report that in the absence of SNAP and NSF, these three SNAREs form a stable complex that can also bind synaptotagmin. Synaptotagmin is displaced by alpha-SNAP, suggesting that these two proteins share binding sites on the SNARE complex and implying that synaptotagmin operates as a "clamp" to prevent fusion from proceeding in the absence of a signal. The alpha-SNAP-SNARE complex can bind NSF, and NSF-dependent hydrolysis of ATP dissociates the complex, separating syntaxin, SNAP-25, and VAMP. ATP hydrolysis by NSF may provide motion to initiate bilayer fusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Definition of the readily releasable pool of vesicles at hippocampal synapses.

            A readily releasable pool of quanta, tentatively identified with docked synaptic vesicles, has been defined by analysis of the neurotransmitter release caused by application of hypertonic solutions. The goal of this work is to determine the relationship of this functionally defined readily releasable pool to the one drawn upon by action potential-evoked release. We find that hypertonic solutions do not act through changes in intracellular calcium. Since the release produced by action potentials and hypertonic solutions varies in parallel as the pool size is changed, we conclude that the same pool is shared by both mechanisms. This conclusion, taken together with other observations in the literature, means that the synaptic release probability depends on the size of the readily releasable pool.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The synaptic vesicle cycle: a cascade of protein-protein interactions.

              The synaptic vesicle cycle at the nerve terminal consists of vesicle exocytosis with neurotransmitter release, endocytosis of empty vesicles, and regeneration of fresh vesicles. Of all cellular transport pathways, the synaptic vesicle cycle is the fastest and the most tightly regulated. A convergence of results now allows formulation of molecular models for key steps of the cycle. These developments may form the basis for a mechanistic understanding of higher neural function.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                30 June 1997
                : 137
                : 7
                : 1589-1601
                Affiliations
                Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, North Carolina 27858
                Article
                10.1083/jcb.137.7.1589
                2137828
                9199173
                03c98880-f27e-4b00-aecb-58105ac6209f
                Copyright @ 1997
                History
                : 20 December 1996
                : 6 May 1997
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article