39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The gut microbiota plays a significant role in the progression of fatty liver disease; however, the mediators and their mechanisms remain to be elucidated. Comparing metabolite profile differences between germ-free and conventionally raised mice against differences between mice fed a low- and high-fat diet (HFD), we identified tryptamine and indole-3-acetate (I3A) as metabolites that depend on the microbiota and are depleted under a HFD. Both metabolites reduced fatty-acid- and LPS-stimulated production of pro-inflammatory cytokines in macrophages and inhibited the migration of cells toward a chemokine, with I3A exhibiting greater potency. In hepatocytes, I3A attenuated inflammatory responses under lipid loading and reduced the expression of fatty acid synthase and sterol regulatory element-binding protein-1c. These effects were abrogated in the presence of an aryl-hydrocarbon receptor (AhR) antagonist, indicating that the effects are AhR dependent. Our results suggest that gut microbiota could influence inflammatory responses in the liver through metabolites engaging host receptors.

          In Brief

          Dysbiosis of the intestinal microbiota is an emerging factor contributing to the progression of fatty liver disease. Krishnan et al. utilize metabolomics and biochemical assays in conjunction with animal and cell culture models to identify microbiota-dependent metabolites that engage a host receptor to affect liver inflammatory responses under lipid loading.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          METLIN: a metabolite mass spectral database.

          Endogenous metabolites have gained increasing interest over the past 5 years largely for their implications in diagnostic and pharmaceutical biomarker discovery. METLIN (http://metlin.scripps.edu), a freely accessible web-based data repository, has been developed to assist in a broad array of metabolite research and to facilitate metabolite identification through mass analysis. METLINincludes an annotated list of known metabolite structural information that is easily cross-correlated with its catalogue of high-resolution Fourier transform mass spectrometry (FTMS) spectra, tandem mass spectrometry (MS/MS) spectra, and LC/MS data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway

            Background & Aims While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet. Methods C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks. Results HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice. Conclusions HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine.

              Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are largely unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrate that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                101573691
                39703
                Cell Rep
                Cell Rep
                Cell reports
                2211-1247
                6 August 2018
                24 April 2018
                27 February 2019
                : 23
                : 4
                : 1099-1111
                Affiliations
                [1 ]Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
                [2 ]Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
                [3 ]Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
                [4 ]Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
                [5 ]Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M University, College Station, TX, USA
                [6 ]Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
                Author notes

                AUTHOR CONTRIBUTIONS

                S.K., Y.D., R.C.A., D.H.S., M.L.Y., K.L., and A.J. designed the study. S.K., Y.D., M.C., N.S., G.V.S., and R.C.A. performed the experiments. S.K. and Y.D. analyzed data. S.K., Y.D., K.L., and A.J. wrote the manuscript.

                [8 ]Lead Contact
                Article
                NIHMS965665
                10.1016/j.celrep.2018.03.109
                6392449
                29694888
                03d38213-1cd0-4ef4-afbd-62014ce50a2f

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article