Dengue infection spread in naive populations occurs in an explosive and widespread fashion primarily due to the absence of population herd immunity, the population dynamics and dispersal of Ae. aegypti, and the movement of individuals within the urban space. Knowledge on the relative contribution of such factors to the spatial dimension of dengue virus spread has been limited. In the present study we analyzed the spatio-temporal pattern of a large dengue virus-2 (DENV-2) outbreak that affected the Australian city of Cairns (north Queensland) in 2003, quantified the relationship between dengue transmission and distance to the epidemic's index case (IC), evaluated the effects of indoor residual spraying (IRS) on the odds of dengue infection, and generated recommendations for city-wide dengue surveillance and control.
We retrospectively analyzed data from 383 DENV-2 confirmed cases and 1,163 IRS applications performed during the 25-week epidemic period. Spatial (local k-function, angular wavelets) and space-time (Knox test) analyses quantified the intensity and directionality of clustering of dengue cases, whereas a semi-parametric Bayesian space-time regression assessed the impact of IRS and spatial autocorrelation in the odds of weekly dengue infection. About 63% of the cases clustered up to 800 m around the IC's house. Most cases were distributed in the NW-SE axis as a consequence of the spatial arrangement of blocks within the city and, possibly, the prevailing winds. Space-time analysis showed that DENV-2 infection spread rapidly, generating 18 clusters (comprising 65% of all cases), and that these clusters varied in extent as a function of their distance to the IC's residence. IRS applications had a significant protective effect in the further occurrence of dengue cases, but only when they reached coverage of 60% or more of the neighboring premises of a house.
By applying sound statistical analysis to a very detailed dataset from one of the largest outbreaks that affected the city of Cairns in recent times, we not only described the spread of dengue virus with high detail but also quantified the spatio-temporal dimension of dengue virus transmission within this complex urban environment. In areas susceptible to non-periodic dengue epidemics, effective disease prevention and control would depend on the prompt response to introduced cases. We foresee that some of the results and recommendations derived from our study may also be applicable to other areas currently affected or potentially subject to dengue epidemics.
Global trends in population growth and human redistribution and movement have reshaped the map of dengue transmission risk, exposing a significant proportion of the world's population to the threat of dengue epidemics. Knowledge on the relative contribution of vector and human movement to the widespread and explosive nature of dengue epidemic spread within an urban environment is limited. By analyzing a very detailed dataset of a dengue epidemic that affected the Australian city of Cairns we performed a comprehensive quantification of the spatio-temporal dimensions of dengue virus epidemic transmission and propagation within a complex urban environment. Space and space-time analysis and models allowed derivation of detailed information on the pattern of introduction and epidemic spread of dengue infection within the urban space. We foresee that some of the results and recommendations derived from our study may also be applicable to many other areas currently affected or potentially subject to dengue epidemics.