13
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system.

      The Journal of Comparative Neurology
      Animals, Animals, Genetically Modified, Brain, growth & development, metabolism, Carrier Proteins, genetics, Cell Line, Tumor, Dopamine, Drosophila Proteins, Drosophila melanogaster, Glutamic Acid, Immunohistochemistry, Larva, Mutation, Neuroendocrine Cells, Neurons, Neurosecretory Systems, Peripheral Nervous System, Rats, Spinal Cord, gamma-Aminobutyric Acid

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protein interacting with C kinase 1 (PICK1) protein was first identified as a novel binding partner for protein kinase C. PICK1 contains a membrane-binding BAR domain and a PDZ domain interacting with many synaptic proteins, including the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1-expressing cells form a subpopulation of neurons. PICK1 immunoreactivity was neither detected in glutamatergic nor in dopaminergic neurons. Also, we observed PICK1 expression in only a few GABAergic neurons, located in the antennal lobe. In contrast, we detected robust PICK1 immunolabeling of peptidergic neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells also occurs in mammals, as it was also observed in a rat insulinoma cell line derived from pancreatic beta-cells. At the subcellular level, PICK1 was found in the perinuclear zone but surprisingly not in synaptic domains. We conclude that PICK1 may serve an important role in the neuroendocrine system both in insects and vertebrates.

          Related collections

          Author and article information

          Comments

          Comment on this article