0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Can the Direct Cardiac Effects of the Electric Pulses Generated by the TASER X26 Cause Immediate or Delayed Sudden Cardiac Arrest in Normal Adults? :

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Biophysical injury mechanisms in electrical shock trauma.

          Electrical shock trauma tends to produce a very complex pattern of injury, mainly because of the multiple modes of frequency-dependent tissue-field interactions. Historically, Joule heating was thought to be the only cause of electrical injuries to tissue by commercial-frequency electrical shocks. In the last 15 years, biomedical engineering research has improved the understanding of the underlying biophysical injury mechanisms. Besides thermal burns secondary to Joule heating, permeabilization of cell membranes and direct electroconformational denaturation of macromolecules such as proteins have also been identified as tissue-damage mechanisms. This review summarizes the physics of tissue injury caused by contact with commercial-frequency power lines, as well as exposure to lightning and radio frequency (RF), microwave, and ionizing radiation. In addition, we describe the anatomic patterns of the resultant tissue injury from these modes of electromagnetic exposures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ON THE INTENSITY-TIME RELATIONS FOR STIMULATION BY ELECTRIC CURRENTS. I

            Formulae are derived for the time-intensity relations for stimulation by direct currents using the following hypotheses: first, the current produces an excitatory effect whose rate of growth is proportional to the voltage; and second, the tissue reacts toward the normal state at a rate proportional to the amount of excitation. If p represents the local excitatory process numerically, the hypotheses are represented by the differential equation See PDF for Structure. where K and k are constants and V the applied voltage. For the stimulus to be adequate it is assumed that p must be built up to a certain liminal value. It appears as a deduction from the data that this liminal value is a function of the voltage of the form h ± αV where h and α are constants. α is zero or negligible for certain electrodes. αV is a measure of electrotonus or a similar phenomenon. Experimental data are discussed and are shown to agree satisfactorily with the derived formulae for stimulation both at the anode and cathode.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction?

              Sufficiently strong defibrillation shocks will cause temporary or permanent damage to the heart. Weak defibrillation shocks do not cause any damage to the heart but also do not defibrillate. A relevant and practical question is what range of shock energies is most likely to defibrillate while not causing damage to the heart. This question is most difficult to answer in the pre-hospital defibrillation setting where the patients' size and shape vary, placement of the defibrillation patches vary, and the etiology of their arrhythmia varies. Unlike internal defibrillators, which are tested at implantation, efficacy of an external defibrillator is determined only once, when it is most needed. This review discusses shock damage and dysfunction caused by monophasic waveforms as well as biphasic waveforms. Evidence is presented suggesting that for perfused hearts, the threshold for damage is well above any shock size delivered clinically. For non-perfused hearts, both in humans and animals, evidence is presented that monophasic shocks of up to 5 J/kg do not cause any more cardiac damage/dysfunction than that associated with smaller shocks and that much of this damage is caused by the ischemic period itself rather than the shock. Although many patients can be defibrillated with 150 J (2.2 J/kg) biphasic shocks, some patients may require biphasic shocks up to 360 J (5 J/kg) to be defibrillated. Studies still need to be performed comparing the efficacy and damaging effects of 360 J biphasic shocks to 150 J biphasic shocks. Until those studies are completed, it seems reasonable to use the same 360 J (5 J/kg) energy limit for biphasic shocks as for monophasic shocks.
                Bookmark

                Author and article information

                Journal
                The American Journal of Forensic Medicine and Pathology
                The American Journal of Forensic Medicine and Pathology
                Ovid Technologies (Wolters Kluwer Health)
                0195-7910
                2007
                September 2007
                : 28
                : 3
                : 195-201
                Article
                10.1097/PAF.0b013e31803179a9
                03f834c0-3141-4c61-a1bb-6d8170a9a4f6
                © 2007

                Comments

                Comment on this article