169
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Light trapping in silicon nanowire solar cells.

      1 ,
      Nano letters
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thin-film structures can reduce the cost of solar power by using inexpensive substrates and a lower quantity and quality of semiconductor material. However, the resulting short optical path length and minority carrier diffusion length necessitates either a high absorption coefficient or excellent light trapping. Semiconducting nanowire arrays have already been shown to have low reflective losses compared to planar semiconductors, but their light-trapping properties have not been measured. Using optical transmission and photocurrent measurements on thin silicon films, we demonstrate that ordered arrays of silicon nanowires increase the path length of incident solar radiation by up to a factor of 73. This extraordinary light-trapping path length enhancement factor is above the randomized scattering (Lambertian) limit (2n(2) approximately 25 without a back reflector) and is superior to other light-trapping methods. By changing the silicon film thickness and nanowire length, we show that there is a competition between improved absorption and increased surface recombination; for nanowire arrays fabricated from 8 mum thick silicon films, the enhanced absorption can dominate over surface recombination, even without any surface passivation. These nanowire devices give efficiencies above 5%, with short-circuit photocurrents higher than planar control samples.

          Related collections

          Author and article information

          Journal
          Nano Lett
          Nano letters
          American Chemical Society (ACS)
          1530-6992
          1530-6984
          Mar 10 2010
          : 10
          : 3
          Affiliations
          [1 ] Department of Chemistry, University of California, Berkeley, California 94720, USA.
          Article
          10.1021/nl100161z
          20108969
          04020a0e-b480-4629-8deb-f0ca685582ff
          History

          Comments

          Comment on this article