99
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative stress, aging, and diseases

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          The thioredoxin antioxidant system.

          The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of antioxidants in the chemistry of oxidative stress: A review.

            This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The free radical theory of aging matures.

              The free radical theory of aging, conceived in 1956, has turned 40 and is rapidly attracting the interest of the mainstream of biological research. From its origins in radiation biology, through a decade or so of dormancy and two decades of steady phenomenological research, it has attracted an increasing number of scientists from an expanding circle of fields. During the past decade, several lines of evidence have convinced a number of scientists that oxidants play an important role in aging. (For the sake of simplicity, we use the term oxidant to refer to all "reactive oxygen species," including O2-., H2O2, and .OH, even though the former often acts as a reductant and produces oxidants indirectly.) The pace and scope of research in the last few years have been particularly impressive and diverse. The only disadvantage of the current intellectual ferment is the difficulty in digesting the literature. Therefore, we have systematically reviewed the status of the free radical theory, by categorizing the literature in terms of the various types of experiments that have been performed. These include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, the manipulation of metabolic activity and oxygen tension, treatment with dietary and pharmacological antioxidants, in vitro senescence, classical and population genetics, molecular genetics, transgenic organisms, the study of human diseases of aging, epidemiological studies, and the ongoing elucidation of the role of active oxygen in biology.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                Clinical Interventions in Aging
                Clinical Interventions in Aging
                Dove Medical Press
                1176-9092
                1178-1998
                2018
                26 April 2018
                : 13
                : 757-772
                Affiliations
                [1 ]Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
                [2 ]Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
                [3 ]San Raffaele Roma Open University, Rome, Italy
                [4 ]Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy
                [5 ]Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
                [6 ]Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy
                Author notes
                Correspondence: Pasquale Abete, Department of Translational Medical Sciences, University of Naples “Federico II”, Via S Pansini, Naples 80131, Italy, Tel +39 081 746 2270, Fax +39 081 746 2339, Email p.abete@ 123456unina.it
                Article
                cia-13-757
                10.2147/CIA.S158513
                5927356
                29731617
                040d927f-c5d0-4d27-bf2a-c320abf2e467
                © 2018 Liguori et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Health & Social care
                elderly,reactive oxygen species,reactive nitrogen species,antioxidants
                Health & Social care
                elderly, reactive oxygen species, reactive nitrogen species, antioxidants

                Comments

                Comment on this article