21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Clinical Decision Support System for the Diagnosis, Fracture Risks and Treatment of Osteoporosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Expanding medical knowledge increases the potential risk of medical errors in clinical practice. We present, OPAD, a clinical decision support system in the field of the medical care of osteoporosis. We utilize clinical information from international guidelines and experts in the field of osteoporosis. Physicians are provided with user interface to insert standard patient data, from which OPAD provides instant diagnostic comments, 10-year risk of fragility fracture, treatment options for the given case, and when to offer a follow-up DXA-evaluation. Thus, the medical decision making is standardized according to the best expert knowledge at any given time. OPAD was evaluated in a set of 308 randomly selected individuals. OPAD's ten-year fracture risk computation is nearly identical to FRAX ( r = 0.988). In 58% of cases OPAD recommended DXA evaluation at the present time. Following a DXA measurement in all individuals, 71% of those that were recommended to have DXA at the present time received recommendation for further investigation or specific treatment by the OPAD. In only 5.9% of individuals in which DXA was not recommended, the result of the BMD measurement changed the recommendations given by OPAD.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis of osteoporosis and assessment of fracture risk.

          John Kanis (2002)
          The diagnosis of osteoporosis centres on the assessment of bone mineral density (BMD). Osteoporosis is defined as a BMD 2.5 SD or more below the average value for premenopausal women (T score < -2.5 SD). Severe osteoporosis denotes osteoporosis in the presence of one or more fragility fractures. The same absolute value for BMD used in women can be used in men. The recommended site for diagnosis is the proximal femur with dual energy X-ray absorptiometry (DXA). Other sites and validated techniques, however, can be used for fracture prediction. Although hip fracture prediction with BMD alone is at least as good as blood pressure readings to predict stroke, the predictive value of BMD can be enhanced by use of other factors, such as biochemical indices of bone resorption and clinical risk factors. Clinical risk factors that contribute to fracture risk independently of BMD include age, previous fragility fracture, premature menopause, a family history of hip fracture, and the use of oral corticosteroids. In the absence of validated population screening strategies, a case finding strategy is recommended based on the finding of risk factors. Treatment should be considered in individuals subsequently shown to have a high fracture risk. Because of the many techniques available for fracture risk assessment, the 10-year probability of fracture is the desirable measurement to determine intervention thresholds. Many treatments can be provided cost-effectively to men and women if hip fracture probability over 10 years ranges from 2% to 10% dependent on age.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoporosis: a still increasing prevalence.

              It is estimated that over 200 million people worldwide have osteoporosis. The prevalence of osteoporosis is continuing to escalate with the increasingly elderly population. The major complication of osteoporosis is an increase in fragility fractures leading to morbidity, mortality, and decreased quality of life. In the European Union, in 2000, the number of osteoporotic fractures was estimated at 3.79 million. A baseline fracture is a very strong predictor of further fractures with 20% of patients experiencing a second fracture within the first year. The costs to health care services are already considerable and, on current trends, are predicted to double by 2050. The direct costs of osteoporotic fractures to the health services in the European Union in the year 2000 were estimated at 32 billion Euros. Guidelines for the diagnosis and treatment of osteoporosis are available in many countries; however, implementation is generally poor despite the availability of treatments with proven efficacy. Programs to increase awareness of osteoporosis and its outcomes are necessary for healthcare specialists and the general public. Earlier diagnosis and intervention prior to the first fracture are highly desirable.
                Bookmark

                Author and article information

                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                CMMM
                Computational and Mathematical Methods in Medicine
                Hindawi Publishing Corporation
                1748-670X
                1748-6718
                2015
                1 March 2015
                : 2015
                : 189769
                Affiliations
                1Institute of Biomedical and Neural Engineering, School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
                2Centre for Rheumatology Research, University Hospital, 101 Reykjavik, Iceland
                3Faculty of Medicine, Debrecen University, Debrecen 4032, Hungary
                4Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
                5Osteoporosis Clinic, Akureyri Hospital, 600 Akureyri, Iceland
                6Department of Immunology, University Hospital, 101 Reykjavik, Iceland
                Author notes
                *Bjarni V. Halldorsson: bjarnivh@ 123456ru.is

                Academic Editor: Martin Grootveld

                Author information
                http://orcid.org/0000-0003-4631-6505
                Article
                10.1155/2015/189769
                4359799
                041533aa-3fdc-4fea-a320-5446c410ae88
                Copyright © 2015 Bjarni V. Halldorsson et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 May 2014
                : 31 August 2014
                : 9 October 2014
                Categories
                Research Article

                Applied mathematics
                Applied mathematics

                Comments

                Comment on this article