+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Berberine Induces Autophagic Cell Death in Acute Lymphoblastic Leukemia by Inactivating AKT/mTORC1 Signaling

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Berberine has been reported to inhibit cancer cell growth by apoptosis induction and exhibits a protective role against cancer progression. The current study aims to investigate the effects of berberine on acute lymphoblastic leukemia (ALL) and the mechanism beyond apoptosis.


          Cell viability was determined in ALL cell lines EU-6 and SKW-3 using trypan blue staining. Cell autophagy was determined by immunofluorescence and Western blot. ALL xenograft mice were established to investigate the anti-tumor effects of BBR. The molecular mechanism was explored in ALL cell lines using siRNA and signaling inhibitors.


          Herein, we show that berberine treatment significantly inhibits ALL cell viability and promotes cell death by inducing autophagy in a dose-dependent manner. Moreover, berberine significantly alleviates the aggressive pathological condition in ALL xenograft mice. Mechanistic studies exhibit that berberine induces autophagic death in ALL cells by inactivating AKT/mTORC1 signaling. Chemically targeting AKT/mTORC1 signaling controls berberine-induced cell autophagy in vitro, and blockade of autophagic process blunts berberine-alleviated pathological condition in vivo.


          In conclusion, our study reveals that berberine could induce ALL cell autophagic death by inactivating AKT/mTORC1 signaling that could be used to develop small molecule drug for ALL treatment.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability.

          Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment.
            • Record: found
            • Abstract: found
            • Article: not found

            Relapsed childhood acute lymphoblastic leukaemia.

            With steadily improved cure rates for children with newly diagnosed acute lymphoblastic leukaemia (ALL), treating relapsed ALL has become increasingly challenging largely due to resistance to salvage therapy. Improved biological understanding of mechanisms of relapse and drug resistance, the identification of actionable molecular targets by studying leukaemic cell and host genetics, precise risk stratification with minimum residual disease measurement, and the development of new therapeutic drugs and approaches are needed to improve outcomes of relapsed patients. Molecularly targeted therapies and innovative immunotherapeutic approaches that include specialised monoclonal antibodies and cellular therapies hold promise of enhanced leukaemia cell killing with non-overlapping toxicities. Advances in preparative regimens, donor selection, and supportive care should improve the success of haemopoietic stem-cell transplantation for high-risk patients. Copyright © 2013 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia.

              Mutations and chromosomal translocations occur in leukemic cells that result in elevated expression or constitutive activation of various growth factor receptors and downstream kinases. The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are often activated by mutations in upstream genes. The Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways are regulated by upstream Ras that is frequently mutated in human cancer. Recently, it has been observed that the FLT-3 and Jak kinases and the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase are also frequently mutated or their expression is altered in certain hematopoietic neoplasms. Many of the events elicited by the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways have direct effects on survival pathways. Aberrant regulation of the survival pathways can contribute to uncontrolled cell growth and lead to leukemia. In this review, we describe the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT signaling cascades and summarize recent data regarding the regulation and mutation status of these pathways and their involvement in leukemia.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                12 May 2020
                : 14
                : 1813-1823
                [1 ]Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052, People’s Republic of China
                [2 ]Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052, People’s Republic of China
                Author notes
                Correspondence: Jian Liu The First Affiliated Hospital of Zhengzhou University , 1 East Jianshe Road, Zhengzhou450052, People’s Republic of China Email liujian018@qq.com
                © 2020 Liu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 7, References: 56, Pages: 11
                This study was supported by a grant from the National Natural Science Foundation of China (No. 81600133 to J.L.).
                Original Research


                Comment on this article