804
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The druggable genome

      ,
      Nature Reviews Drug Discovery
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An assessment of the number of molecular targets that represent an opportunity for therapeutic intervention is crucial to the development of post-genomic research strategies within the pharmaceutical industry. Now that we know the size of the human genome, it is interesting to consider just how many molecular targets this opportunity represents. We start from the position that we understand the properties that are required for a good drug, and therefore must be able to understand what makes a good drug target.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative genomics of the eukaryotes.

          A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Drug Discovery: A Historical Perspective

            J. Drews (2000)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ("metabolome") analysis.

              Escherichia coli growing on glucose in minimal medium controls its metabolite pools in response to environmental conditions. The extent of pool changes was followed through two-dimensional thin-layer chromatography of all 14C-glucose labelled compounds extracted from bacteria. The patterns of metabolites and spot intensities detected by phosphorimaging were found to reproducibly differ depending on culture conditions. Clear trends were apparent in the pool sizes of several of the 70 most abundant metabolites extracted from bacteria growing in glucose-limited chemostats at different growth rates. The pools of glutamate, aspartate, trehalose, and adenosine as well as UDP-sugars and putrescine changed markedly. The data on pools observed by two-dimensional thin-layer chromatography were confirmed for amino acids by independent analysis. Other unidentified metabolites also displayed different spot intensities under various conditions, with four trend patterns depending on growth rate. As RpoS controls a number of metabolic genes in response to nutrient limitation, an rpoS mutant was also analyzed for metabolite pools. The mutant had altered metabolite profiles, but only some of the changes at slow growth rates were ascribable to the known control of metabolic genes by RpoS. These results indicate that total metabolite pool ("metabolome") analysis offers a means of revealing novel aspects of cellular metabolism and global regulation.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Drug Discovery
                Nat Rev Drug Discov
                Springer Science and Business Media LLC
                1474-1776
                1474-1784
                September 2002
                September 2002
                : 1
                : 9
                : 727-730
                Article
                10.1038/nrd892
                12209152
                041fdb84-808a-49a2-9a20-7eb296de0312
                © 2002

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article