25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Temozolomide (TMZ) is commonly used for glioma chemotherapy. However, TMZ resistance limits the therapeutic effect of TMZ in glioma treatment. LncRNA-H19 acts as an oncogenic LncRNA in some types of cancers and has been reported to be up-regulated in glioma.

          Materials and methods

          In our present study, we established TMZ-resistant glioma cells (U-251TMZ and M059JTMZ) to explore the effect of H19 on the chemoresistance of glioma cells.

          Results

          We observed that the expression of H19 was significantly increased in U-251TMZ and M059JTMZ cells. Knockdown of H19 expression using specific shRNA in U-251TMZ and M059JTMZ led to decreased half maximal inhibitory concentration (IC 50) values for TMZ and increased cell apoptosis rates, indicating that the silencing of H19 decreased chemoresistance of glioma cells to TMZ. In addition, silencing of H19 suppressed epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin and decreasing the expression of mesenchymal marker Vimentin and ZEB1. Moreover, inducing EMT by TGF-β1 treatment led to increased IC 50 values for TMZ and decreased cell apoptosis rates compared with TMZ+H19 shRNA group, suggesting that the induction of EMT counteracted the inhibitory effect of H19 shRNA on chemoresistance of glioma cells to TMZ. Furthermore, the reduced expression of H19 down-regulated the expression of β-Catenin and its downstream targets c-myc and Survivin in TMZ-treated glioma cells. Activation of Wnt/β-Catenin pathway by Licl treatment promoted EMT and enhanced chemoresistance to TMZ compared with TMZ+H19 shRNA group.

          Conclusion

          Taken together, our data suggest that H19 decreased chemoresistance of glioma cells to TMZ by suppressing EMT via the inhibition of Wnt/β-Catenin pathway. Our study might represent a novel therapeutic target for TMZ-resistant glioma.

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r

            The H19 large intergenic noncoding RNA (lincRNA) is one of the most highly abundant and conserved transcripts in mammalian development, being expressed in both embryonic and extraembryonic cell lineages, yet its physiological function is unknown. Here we show that miR-675, a microRNA (miRNA) embedded within H19’s first exon, is expressed exclusively in the placenta from the gestational time point when placental growth normally ceases, and placentas that lack H19 continue to grow. Overexpression of miR-675 in a range of embryonic and extraembryonic cell lines results in their reduced proliferation; targets of the miRNA are upregulated in the H19 null placenta, including the growth promoting Insulin-like growth factor 1 receptor (Igf1r). Moreover, the excision of miR-675 from H19 is dynamically regulated by the stress response RNA binding protein HuR. These results suggest that H19’s main physiological role is in limiting growth of the placenta prior to birth, by regulated processing of miR-675. The controlled release of miR-675 from H19 may also allow rapid inhibition of cell proliferation in response to cellular stress or oncogenic signals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression.

              lncRNA H19 is essential for human tumor growth. However, little is known about whether H19 regulates bladder cancer metastasis. Here we found that H19 levels are remarkably increased in bladder cancer tissues, and upregulated H19 promotes bladder cancer cell migration in vitro and in vivo. H19 is associated with enhancer of zeste homolog 2 (EZH2), and that this association results in Wnt/β-catenin activation and subsequent downregulation of E-cadherin. A significant negative correlation is also observed between H19 levels and E-cad levels in vivo. These data suggest that upregulated H19 enhances bladder cancer metastasis by associating with EZH2 and inhibiting E-cad expression. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2018
                11 January 2018
                : 11
                : 313-321
                Affiliations
                Department of Neurosurgery, CangZhou Central Hospital, Hebei, China
                Author notes
                Correspondence: Linwei Jia, Department of Neurosurgery, CangZhou Central Hospital, 16 XinHua West Road, CangZhou 061000, Hebei, China, Tel +86 317 207 5627, Email jialinweihb@ 123456163.com
                Article
                ott-11-313
                10.2147/OTT.S154339
                5769571
                04266283-103f-49a0-a9d1-2d99580018e8
                © 2018 Jia et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                lncrna-h19,chemoresistance,glioma,temozolomide,emt,wnt/β-catenin
                Oncology & Radiotherapy
                lncrna-h19, chemoresistance, glioma, temozolomide, emt, wnt/β-catenin

                Comments

                Comment on this article