1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New insights into the biology, diagnosis and immune response to Dirofilaria repens in the canine host

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Antibody response to D. repens in dogs develops before the onset of patency.

          • Wolbachia and D. repens antibodies had peaks of OD values on Days 220, 245, 281.

          • The specificity of IgG ELISA against D. repens and Wolbachia must be evaluated.

          • If microfilarial counts are too low, PCR can be considered a sensitive alternative.

          Abstract

          Dogs are the primary host for Dirofilaria repens, therefore it is mandatory to accurately diagnose the canine infection and to expand our current knowledge on parasite biology and the immune response of the infected host for a better prevention.Thus, the aim of the present study was to provide new insights from experimental infections of dogs with D. repens, focusing on the evaluation of: 1) the pre-patent period and 2) the antibody response against D. repens somatic antigens and against the Wolbachia endosymbiont. Briefly, on Day 0, twenty purpose-bred Beagle dogs were experimentally infected with 50 infective larvae (L3) of D. repens. Starting from Day 58 until the last day of the study (Day 281), blood samples were collected on a monthly basis for detection of antibodies against D. repens (Dr) and recombinant Wolbachia surface protein (rWSP) by non-commercial IgG-ELISAs. Additional samples were collected on Days 220, 245 and 281 for the detection of microfilariae (mff) using the modified Knott’s test and biomolecular analysis, following two PCR protocols: Gioia et al. (2010; protocol A) and Rishniw et al. (2006- protocol B). The results were analysed by univariate statistical analyses using 2 × 2 contingency tables and K Cohen was calculated to assess the agreement among all the diagnostic techniques. Overall, the outcome of the study revealed that out of the 20 dogs experimentally infected with D. repens, 16 (80 %) were microfilaraemic, 17 (85 %) were positive at DNA detection in the blood, 18 (90 %) had D. repens antibodies and 16 (80 %) had Wolbachia antibodies on the last day of the study. The overall k agreement between Knott’s and PCR protocol B was 0.442 (P = 0.0001) and increased throughout the study, reaching 0.828 (P = 0.0001) on Day 281. To the authors knowledge, this is only the second study reporting antibody response to D. repens somatic antigen in experimentally infected dogs. ELISA results showed that an antibody response develops before the onset of patency, and steadily increases with time. Results would suggest that the development of an immunological response to infection could lead to application in epidemiological studies, risk assessment and as an aid in the diagnostic approach in dogs, in particular for early infections without mff.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Human and animal dirofilariasis: the emergence of a zoonotic mosaic.

          Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discrimination between six species of canine microfilariae by a single polymerase chain reaction.

            Canine dirofilariasis caused by Dirofilaria immitis is usually diagnosed by specific antigen testing and/or identification of microfilariae. However, D. immitis and at least six other filariae can produce canine microfilaremias with negative heartworm antigen tests. Discriminating these can be of clinical importance. To resolve discordant diagnoses by two diagnostic laboratories in an antigen-negative, microfilaremic dog recently imported into the US from Europe we developed a simple molecular method of identifying different microfilariae, and subsequently validated our method against six different filariae known to infect dogs by amplifying ribosomal DNA spacer sequences by polymerase chain reaction using common and species-specific primers, and sequencing the products to confirm the genotype of the filariae. We identified the filaria in this dog as D. repens. This is the first case of D. repens infection in the United States. Additionally, we examined microfilariae from five additional antigen-negative, microfilaremic dogs and successfully identified the infecting parasite in each case. Our diagnoses differed from the initial morphological diagnosis in three of these cases, demonstrating the inaccuracy of morphological diagnosis. In each case, microfilariae identified morphologically as A. reconditum were identified as D. immitis by molecular methods. Finally, we demonstrated that our PCR method should amplify DNA from at least two additional filariae (Onchocerca and Mansonella), suggesting that this method may be suitable for genotyping all members of the family Onchocercidae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vector-borne helminths of dogs and humans in Europe

              Presently, 45% of the total human population of Europe, as well as their domestic and companion animals, are exposed to the risk of vector-borne helminths (VBH) causing diseases. A plethora of intrinsic biological and extrinsic factors affect the relationship among helminths, vectors and animal hosts, in a constantly changing environment. Although canine dirofilarioses by Dirofilaria immitis and Dirofilaria repens are key examples of the success of VBH spreading into non-endemic areas, another example is represented by Thelazia callipaeda eyeworm, an emergent pathogen of dogs, cats and humans in several regions of Europe. The recent finding of Onchocerca lupi causing canine and human infestation in Europe and overseas renders the picture of VBH even more complicated. Similarly, tick-transmitted filarioids of the genus Cercopithifilaria infesting the skin of dogs were recently shown to be widespread in Europe. Although for most of the VBH above there is an increasing accumulation of research data on their distribution at national level, the overall impact of the diseases they cause in dogs and humans is not fully recognised in many aspects. This review investigates the reasons underlying the increasing trend in distribution of VBH in Europe and discusses the diagnostic and control strategies currently available. In addition, this article provides the authors’ opinion on some topics related to VBH that would deserve further scientific investigation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Parasitol X
                Vet Parasitol X
                Veterinary Parasitology: X
                Elsevier
                2590-1389
                05 August 2020
                December 2020
                05 August 2020
                : 4
                : 100029
                Affiliations
                [a ]Ion Ionescu de la Brad, University of Agricultural Sciences and Veterinary Medicine Iasi, Faculty of Veterinary Medicine, M. Sadoveanu Alley No. 8, 700489, Iasi, Romania
                [b ]Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via della Veterinaria, 1, Naples, Italy
                [c ]Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio 10, 43126, Parma, Italy
                [d ]Boehringer Ingelheim Animal (BI-AH) Health Research Centre, France
                [e ]Group of Animal and Human Dirofilariosis, Parasitology Area, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
                Author notes
                [* ]Corresponding author at: Department of Veterinary Medicine and Animal Productions, Unit of Parasitology and Parasitic Diseases, University of Naples Federico II, Via della Veterinaria, 1, 80137, Naples, Italy. lrinaldi@ 123456unina.it
                Article
                S2590-1389(20)30007-2 100029
                10.1016/j.vpoa.2020.100029
                7458378
                32904796
                04371c19-934d-487c-b9f2-f1cf81f9c61c
                © 2020 Department of Vetertinary Medicine and Animal Productio, University of Napoli Federico II

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 31 March 2020
                : 4 August 2020
                : 5 August 2020
                Categories
                Article

                dirofilaria repens antibodies,wolbachia antibodies,non-commercial igg-elisa,amicrofilaraemic dogs,multiplex pcr

                Comments

                Comment on this article