Blog
About

44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Crystal structure of the human β2 adrenergic G-protein-coupled receptor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was crystallized in a lipid environment when bound to an inverse agonist and in complex with a Fab that binds to the third intracellular loop. Diffraction data were obtained by high-brilliance microcrystallography and the structure determined at 3.4 A/3.7 A resolution. The cytoplasmic ends of the beta2AR transmembrane segments and the connecting loops are well resolved, whereas the extracellular regions of the beta2AR are not seen. The beta2AR structure differs from rhodopsin in having weaker interactions between the cytoplasmic ends of transmembrane (TM)3 and TM6, involving the conserved E/DRY sequences. These differences may be responsible for the relatively high basal activity and structural instability of the beta2AR, and contribute to the challenges in obtaining diffraction-quality crystals of non-rhodopsin GPCRs.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.

          A new high-resolution structure is reported for bovine rhodopsin, the visual pigment in rod photoreceptor cells. Substantial improvement of the resolution limit to 2.2 A has been achieved by new crystallization conditions, which also reduce significantly the probability of merohedral twinning in the crystals. The new structure completely resolves the polypeptide chain and provides further details of the chromophore binding site including the configuration about the C6-C7 single bond of the 11-cis-retinal Schiff base. Based on both an earlier structure and the new improved model of the protein, a theoretical study of the chromophore geometry has been carried out using combined quantum mechanics/force field molecular dynamics. The consistency between the experimental and calculated chromophore structures is found to be significantly improved for the 2.2 A model, including the angle of the negatively twisted 6-s-cis-bond. Importantly, the new crystal structure refinement reveals significant negative pre-twist of the C11-C12 double bond and this is also supported by the theoretical calculation although the latter converges to a smaller value. Bond alternation along the unsaturated chain is significant, but weaker in the calculated structure than the one obtained from the X-ray data. Other differences between the experimental and theoretical structures in the chromophore binding site are discussed with respect to the unique spectral properties and excited state reactivity of the chromophore.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein.

            G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the beta2-adrenergic receptor (beta2AR), can be incorporated into a reconstituted high-density lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single beta2AR is incorporated per rHDL particle. The monomeric beta2AR efficiently activates Gs and displays GTP-sensitive allosteric ligand-binding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conformational complexity of G-protein-coupled receptors.

              G-protein-coupled receptors (GPCRs) are remarkably versatile signaling molecules. Members of this large family of membrane proteins respond to structurally diverse ligands and mediate most transmembrane signal transduction in response to hormones and neurotransmitters, and in response to the senses of sight, smell and taste. Individual GPCRs can signal through several G-protein subtypes and through G-protein-independent pathways, often in a ligand-specific manner. This functional plasticity can be attributed to structural flexibility of GPCRs and the ability of ligands to induce or to stabilize ligand-specific conformations. Here, we review what has been learned about the dynamic nature of the structure and mechanism of GPCR activation, primarily focusing on spectroscopic studies of purified human beta2 adrenergic receptor.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                November 2007
                October 21 2007
                November 2007
                : 450
                : 7168
                : 383-387
                Article
                10.1038/nature06325
                17952055
                © 2007

                http://www.springer.com/tdm

                Comments

                Comment on this article