1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of Amikacin Drug Exposure and Nephrotoxicity in an Animal Model

        , , ,
      Antimicrobial Agents and Chemotherapy
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Despite excellent in vitro activity, aminoglycosides are used conservatively to treat multidrug-resistant bacterial infections due to their associated nephrotoxicity. Aminoglycosides are known to accumulate in the kidneys, but the quantitative relationship between drug exposures and nephrotoxicity is not well established. To bridge the knowledge gap, the objective of this study was to develop an animal model with clinically relevant conditions to mimic human disease progression. Single-dose pharmacokinetics were studied in Sprague-Dawley rats dosed either with 100 or 500 mg/kg of body weight of amikacin subcutaneously. Serial blood samples were collected, and serum amikacin concentrations were measured using liquid chromatography tandem mass spectrometry. Rats were also dosed with amikacin once daily for up to 10 days; blood samples were taken at baseline and daily to detect nephrotoxicity (defined as doubling of serum creatinine from baseline). Kidneys from both studies were harvested from selected rats, and amikacin concentrations in renal tissues were measured. A dose-dependent increase in systemic area under the curve (AUC) was observed, which ranged from approximately 1/3 (AUC of 53 mg·h/liter) to 3 times (AUC of 650 mg·h/liter) the expected exposure resulting from standard dosing in humans. Nephrotoxicity was significantly higher in rats given 500 mg/kg (100% versus 30%, P = 0.003). Kaplan-Meier analysis also showed a significant difference in nephrotoxicity onset between the two groups ( P = 0.001). Finally, analysis of the renal tissues showed that the accumulation of amikacin could be associated with nephrotoxicity. These results are consistent with clinical observations, which support using this model in the future to investigate an intervention(s) that can be used clinically to alleviate nephrotoxicity.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug resistance in bacteria.

          Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aminoglycosides: An Overview.

            Aminoglycosides are natural or semisynthetic antibiotics derived from actinomycetes. They were among the first antibiotics to be introduced for routine clinical use and several examples have been approved for use in humans. They found widespread use as first-line agents in the early days of antimicrobial chemotherapy, but were eventually replaced in the 1980s with cephalosporins, carbapenems, and fluoroquinolones. Aminoglycosides synergize with a variety of other antibacterial classes, which, in combination with the continued increase in the rise of multidrug-resistant bacteria and the potential to improve the safety and efficacy of the class through optimized dosing regimens, has led to a renewed interest in these broad-spectrum and rapidly bactericidal antibacterials.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Aminoglycosides: nephrotoxicity.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Antimicrobial Agents and Chemotherapy
                Antimicrob Agents Chemother
                American Society for Microbiology
                0066-4804
                1098-6596
                August 20 2020
                August 20 2020
                June 22 2020
                : 64
                : 9
                Article
                10.1128/AAC.00859-20
                7449196
                32571819
                04456198-243c-4fca-95b2-46678bc68a25
                © 2020
                History

                Comments

                Comment on this article