65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture

      Nature neuroscience
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Impairment of tubuloglomerular feedback regulation of GFR in ecto-5'-nucleotidase/CD73-deficient mice.

          Adenosine coordinates organ metabolism and blood supply, and it modulates immune responses. In the kidney it mediates the vascular response elicited by changes in NaCl concentration in the macula densa region of the nephron, thereby serving as an important regulator of GFR. To determine whether adenosine formation depends on extracellular nucleotide hydrolysis, we studied NaCl-dependent GFR regulation (tubuloglomerular feedback) in mice with targeted deletion of ecto-5'-nucleotidase/CD73 (e-5'NT/CD73), the enzyme responsible for adenosine formation from AMP. e-5'NT/CD73(-/-) mice were viable and showed no gross anatomical abnormalities. Blood pressure, blood and urine chemistry, and renal blood flow were not different between e-5'NT/CD73(+/+) and e-5'NT/CD73(-/-) mice. e-5'NT/CD73(-/-) mice had a significantly reduced fall in stop flow pressure and superficial nephron glomerular filtration rate in response to a saturating increase of tubular perfusion flow. Furthermore, whereas tubuloglomerular feedback responses did not change significantly during prolonged loop of Henle perfusion in e-5'NT/CD73(+/+) mice, a complete disappearance of the residual feedback response was noted in e-5'NT/CD73(-/-) mice over 10 minutes of perfusion. The contractile response of isolated afferent arterioles to adenosine was normal in e-5'NT/CD73(-/-) mice. We conclude that the generation of adenosine at the glomerular pole depends to a major extent on e-5'NT/CD73-mediated dephosphorylation of 5'-AMP, presumably generated from released ATP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ATP concentrations and muscle tension increase linearly with muscle contraction.

            Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636-H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 +/- 2 and 16 +/- 3 mmHg (P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% (P < 0.05) and 200% (P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.
              Bookmark

              Author and article information

              Journal
              10.1038/nn.2562
              3467968
              20512135
              http://www.springer.com/tdm

              Comments

              Comment on this article