23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of Keratin-Based Biomaterials for Biomedical Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in the extraction, purification, and characterization of keratin proteins from hair and wool fibers over the past century have led to the development of a keratin-based biomaterials platform. Like many naturally-derived biomolecules, keratins have intrinsic biological activity and biocompatibility. In addition, extracted keratins are capable of forming self-assembled structures that regulate cellular recognition and behavior. These qualities have led to the development of keratin biomaterials with applications in wound healing, drug delivery, tissue engineering, trauma and medical devices. This review discusses the history of keratin research and the advancement of keratin biomaterials for biomedical applications.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New consensus nomenclature for mammalian keratins

            Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodegradable materials based on silk fibroin and keratin.

              Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                Molecular Diversity Preservation International
                1996-1944
                03 February 2010
                February 2010
                : 3
                : 2
                : 999-1014
                Affiliations
                Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA; E-Mail: jrouse@ 123456wfubmc.edu (J.G.R.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: mavandyk@ 123456wfubmc.edu ; Tel.: +1-336-713-7266; Fax: +1-336-713-7290.
                Article
                materials-03-00999
                10.3390/ma3020999
                5513517
                04487c1f-e35d-4487-aeb3-d2a54e66ee27
                © 2010 by the authors;

                licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 06 January 2009
                : 24 January 2010
                : 26 January 2010
                Categories
                Review

                keratin,human hair protein,natural biomaterial,protein film,scaffold

                Comments

                Comment on this article