58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Combined STAT3 and BCR-ABL1 Inhibition Induces Synthetic Lethality in Therapy-Resistant Chronic Myeloid Leukemia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCRABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays, and hydrogen-deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from CML patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μM) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells (LSCs). Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Stat3 as an oncogene.

          STATs are latent transcription factors that mediate cytokine- and growth factor-directed transcription. In many human cancers and transformed cell lines, Stat3 is persistently activated, and in cell culture, active Stat3 is either required for transformation, enhances transformation, or blocks apoptosis. We report that substitution of two cysteine residues within the C-terminal loop of the SH2 domain of Stat3 produces a molecule that dimerizes spontaneously, binds to DNA, and activates transcription. The Stat3-C molecule in immortalized fibroblasts causes cellular transformation scored by colony formation in soft agar and tumor formation in nude mice. Thus, the activated Stat3 molecule by itself can mediate cellular transformation and the experiments focus attention on the importance of constitutive Stat3 activation in human tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stattic: a small-molecule inhibitor of STAT3 activation and dimerization.

            Signal transducers and activators of transcription (STATs) are a family of latent cytoplasmic transcription factors that transmit signals from the cell membrane to the nucleus. One family member, STAT3, is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of cancer cell lines and human tumors. Screening of chemical libraries led to the identification of Stattic, a nonpeptidic small molecule shown to selectively inhibit the function of the STAT3 SH2 domain regardless of the STAT3 activation state in vitro. Stattic selectively inhibits activation, dimerization, and nuclear translocation of STAT3 and increases the apoptotic rate of STAT3-dependent breast cancer cell lines. We propose Stattic as a tool for the inhibition of STAT3 in cell lines or animal tumor models displaying constitutive STAT3 activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.

              Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL(T315I) mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL(T315I)-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.
                Bookmark

                Author and article information

                Journal
                8704895
                5536
                Leukemia
                Leukemia
                Leukemia
                0887-6924
                1476-5551
                12 August 2014
                19 August 2014
                March 2015
                01 September 2015
                : 29
                : 3
                : 586-597
                Affiliations
                [1 ]Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, USA
                [2 ]Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
                [3 ]Department of Medicinal Chemistry, College of Pharmacy, The University of Utah, Salt Lake City, Utah, USA
                [4 ]York University Chemistry Department, Toronto, Ontario, Canada
                [5 ]Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
                [6 ]Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
                [7 ]Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah, USA
                Author notes
                [* ]Contact: Michael W. Deininger, MD, PhD; 2000 Circle of Hope, Room 4280, Salt Lake City, Utah 84112; Ph: 801-587-4640; Fax: 801-585-0900; michael.deininger@ 123456hci.utah.edu
                Article
                NIHMS620355
                10.1038/leu.2014.245
                4334758
                25134459
                04522e60-72f1-479b-b16c-a67e1e198972
                History
                Categories
                Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article