21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of Telomerase Protects Human and Murine Lung Epithelial Cells from Fas- and Bleomycin-Induced Apoptosis via FLIP Upregulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High doses of bleomycin administered to patients with lymphomas and other tumors lead to significant lung toxicity in general, and to apoptosis of epithelial cells, in particular. Apoptosis of alveolar epithelium is an important step in the pathogenesis of bleomycin-induced pulmonary fibrosis. The Fas-FasL pathway is one of the main apoptotic pathways involved. Telomerase is a ribonucleoprotein RNA-dependent DNA polymerase complex consisting of an RNA template and a catalytic protein, telomerase reverse transcriptase (TERT). Telomerase also possess extra-telomeric roles, including modulation of transcription of anti-apoptotic genes, differentiation signals, and more. We hypothesized that telomerase overexpression affects Fas-induced epithelial cell apoptosis by an extra-telomeric role such as regulation of anti-apoptotic genes, specifically FLICE-like inhibitory protein (FLIP). Telomerase in mouse (MLE) and human (A549) lung epithelial cell lines was upregulated by transient transfection using cDNA hTERT expression vector. Telomerase activity was detected using a real-time PCR-based system. Bleomycin, and bleomycin-induced Fas-mediated apoptosis following treatment with anti-Fas activating mAb or control IgG, were assessed by Annexin V staining, FACS analysis, and confocal microscopy; caspase cleavage by Western blot; FLIP or Fas molecule detection by Western blot and flow cytometry. hTERT transfection of lung epithelial cells resulted in a 100% increase in their telomerase activity. Fas-induced lung epithelial cell apoptosis was significantly reduced in hTERT-transfected cells compared to controls in all experiments. Lung epithelial cells with increased telomerase activity had higher levels of FLIP expression but membrane Fas expression was unchanged. Upregulation of hTERT+ in human lung epithelial cells and subsequent downregulation of FLIP by shFLIP-RNA annulled hTERT-mediated resistance to apoptosis. Telomerase-mediated FLIP overexpression may be a novel mechanism to confer protection from apoptosis in bleomycin-exposed human lung epithelial cells.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Extension of life-span by introduction of telomerase into normal human cells.

          Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomerase mutations in families with idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis is progressive and often fatal; causes of familial clustering of the disease are unknown. Germ-line mutations in the genes hTERT and hTR, encoding telomerase reverse transcriptase and telomerase RNA, respectively, cause autosomal dominant dyskeratosis congenita, a rare hereditary disorder associated with premature death from aplastic anemia and pulmonary fibrosis. To test the hypothesis that familial idiopathic pulmonary fibrosis may be caused by short telomeres, we screened 73 probands from the Vanderbilt Familial Pulmonary Fibrosis Registry for mutations in hTERT and hTR. Six probands (8%) had heterozygous mutations in hTERT or hTR; mutant telomerase resulted in short telomeres. Asymptomatic subjects with mutant telomerase also had short telomeres, suggesting that they may be at risk for the disease. We did not identify any of the classic features of dyskeratosis congenita in five of the six families. Mutations in the genes encoding telomerase components can appear as familial idiopathic pulmonary fibrosis. Our findings support the idea that pathways leading to telomere shortening are involved in the pathogenesis of this disease. Copyright 2007 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins.

              Mammalian telomeres are formed by tandem repeats of the TTAGGG sequence, which are progressively lost with each round of cell division. Telomere protection requires a minimal length of TTAGGG repeats to allow the binding of shelterin, which prevents the activation of a DNA damage response (DDR) at chromosome ends. Telomere elongation is carried out by telomerase. Telomerase can also act as a transcriptional modulator of the Wnt-β-catenin signalling pathway and has RNA-dependent RNA polymerase activity. Dysfunctional telomeres can lead to either cancer or ageing pathologies depending on the integrity of the DDR. This Review discusses the role of telomeric proteins in cancer and ageing through modulating telomere length and protection, as well as regulating gene expression by binding to non-telomeric sites.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 May 2015
                2015
                : 10
                : 5
                : e0126730
                Affiliations
                [1 ]Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
                [2 ]Department of Pulmonary and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
                [3 ]Department of Emergency Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
                [4 ]Department of Pathology, Boston University School of Medicine, Boston, MA, United States of America
                INSERM-Université Paris-Sud, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SWD NA PYC RGG ZF RB PZ. Performed the experiments: NA PYC SWD ZF PZ. Analyzed the data: NA PYC RGG ZF SWD PZ MRD. Contributed reagents/materials/analysis tools: SWD RB. Wrote the paper: NA RB ZF SWD.

                Article
                PONE-D-14-06261
                10.1371/journal.pone.0126730
                4423936
                25951185
                045b3939-3fa3-46b0-aa4a-c9b8402c05a4
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 11 March 2014
                : 7 April 2015
                Page count
                Figures: 7, Tables: 0, Pages: 18
                Funding
                This work was supported in part with funding from the Israel Science Foundation (ISF 855/10) and the David Shainberg Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article