27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Shear-thinning hydrogels for biomedical applications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 138

          • Record: found
          • Abstract: found
          • Article: not found

          Injectable hydrogels as unique biomedical materials.

          A concentrated fish soup could be gelled in the winter and re-solled upon heating. In contrast, some synthetic copolymers exhibit an inverse sol-gel transition with spontaneous physical gelation upon heating instead of cooling. If the transition in water takes place below the body temperature and the chemicals are biocompatible and biodegradable, such gelling behavior makes the associated physical gels injectable biomaterials with unique applications in drug delivery and tissue engineering etc. Various therapeutic agents or cells can be entrapped in situ and form a depot merely by a syringe injection of their aqueous solutions at target sites with minimal invasiveness and pain. This tutorial review summarizes and comments on this soft matter, especially thermogelling poly(ethylene glycol)-(biodegradable polyester) block copolymers. The main types of injectable hydrogels are also briefly introduced, including both physical gels and chemical gels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogels: from controlled release to pH-responsive drug delivery.

            Hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Besides exhibiting swelling-controlled drug release, hydrogels also show stimuli-responsive changes in their structural network and hence, the drug release. Because of large variations in physiological pH at various body sites in normal as well as pathological conditions, pH-responsive polymeric networks have been extensively studied. This review highlights the use of hydrogels (a class of polymeric systems) in controlled drug delivery, and their application in stimuli-responsive, especially pH-responsive, drug release.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thermoresponsive hydrogels in biomedical applications.

              Environmentally responsive hydrogels have the ability to turn from solution to gel when a specific stimulus is applied. Thermoresponsive hydrogels utilize temperature change as the trigger that determines their gelling behavior without any additional external factor. These hydrogels have been interesting for biomedical uses as they can swell in situ under physiological conditions and provide the advantage of convenient administration. The scope of this paper is to review the aqueous polymer solutions that exhibit transition to gel upon temperature change. Typically, aqueous solutions of hydrogels used in biomedical applications are liquid at ambient temperature and gel at physiological temperature. The review focuses mainly on hydrogels based on natural polymers, N-isopropylacrylamide polymers, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymers as well as poly(ethylene glycol)-biodegradable polyester copolymers.
                Bookmark

                Author and article information

                Journal
                SMOABF
                Soft Matter
                Soft Matter
                Royal Society of Chemistry (RSC)
                1744-683X
                1744-6848
                2012
                2012
                : 8
                : 2
                : 260-272
                Article
                10.1039/C1SM06513K
                045c71b7-9208-4fe0-80b7-92c381cbb18a
                © 2012
                Product
                Self URI (article page): http://xlink.rsc.org/?DOI=C1SM06513K

                Comments

                Comment on this article