36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overstimulation of newborn mice leads to behavioral differences and deficits in cognitive performance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Observational studies in humans have found associations between overstimulation in infancy via excessive television viewing and subsequent deficits in cognition and attention. We developed and tested a mouse model of overstimulation whereby p10 mice were subjected to audio (70 db) and visual stimulation (flashing lights) for six hours per day for a total of 42 days. 10 days later cognition and behavior were tested using the following tests: Light Dark Latency, Elevated Plus Maze, Novel Object Recognition, and Barnes Maze. In all tests, overstimulated mice performed significantly worse compared to controls suggesting increased activity and risk taking, diminished short term memory, and decreased cognitive function. These findings suggest that excessive non-normative stimulation during critical periods of brain development can have demonstrable untoward effects on subsequent neurocognitive function.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          More hippocampal neurons in adult mice living in an enriched environment.

          Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early television exposure and subsequent attentional problems in children.

            Cross-sectional research has suggested that television viewing may be associated with decreased attention spans in children. However, longitudinal data of early television exposure and subsequent attentional problems have been lacking. The objective of this study was to test the hypothesis that early television exposure (at ages 1 and 3) is associated with attentional problems at age 7. We used the National Longitudinal Survey of Youth, a representative longitudinal data set. Our main outcome was the hyperactivity subscale of the Behavioral Problems Index determined on all participants at age 7. Children who were > or = 1.2 standard deviations above the mean were classified as having attentional problems. Our main predictor was hours of television watched daily at ages 1 and 3 years. Data were available for 1278 children at age 1 and 1345 children at age 3. Ten percent of children had attentional problems at age 7. In a logistic regression model, hours of television viewed per day at both ages 1 and 3 was associated with attentional problems at age 7 (1.09 [1.03-1.15] and 1.09 [1.02-1.16]), respectively. Early television exposure is associated with attentional problems at age 7. Efforts to limit television viewing in early childhood may be warranted, and additional research is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents.

              Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                31 July 2012
                2012
                : 2
                : 546
                Affiliations
                [1 ]simpleSeattle Children's Research Institute PO Box 5371 , Seattle WA 98121
                [2 ]simpleUniversity of Washington
                [3 ]These authors contributed equally to this work.
                Author notes
                Article
                srep00546
                10.1038/srep00546
                3409385
                22855702
                0465b0c9-f2ea-41f6-ac29-f5df4b6f6fdb
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 16 March 2012
                : 19 June 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article