49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genomic innovation for crop improvement

      , , , , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crop production needs to increase to secure future food supplies, while reducing its impact on ecosystems. Detailed characterization of plant genomes and genetic diversity is crucial for meeting these challenges. Advances in genome sequencing and assembly are being used to access the large and complex

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Genome plasticity a key factor in the success of polyploid wheat under domestication.

          Wheat was domesticated about 10,000 years ago and has since spread worldwide to become one of the major crops. Its adaptability to diverse environments and end uses is surprising given the diversity bottlenecks expected from recent domestication and polyploid speciation events. Wheat compensates for these bottlenecks by capturing part of the genetic diversity of its progenitors and by generating new diversity at a relatively fast pace. Frequent gene deletions and disruptions generated by a fast replacement rate of repetitive sequences are buffered by the polyploid nature of wheat, resulting in subtle dosage effects on which selection can operate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA

            Editing plant genomes is technically challenging in hard-to-transform plants and usually involves transgenic intermediates, which causes regulatory concerns. Here we report two simple and efficient genome-editing methods in which plants are regenerated from callus cells transiently expressing CRISPR/Cas9 introduced as DNA or RNA. This transient expression-based genome-editing system is highly efficient and specific for producing transgene-free and homozygous wheat mutants in the T0 generation. We demonstrate our protocol to edit genes in hexaploid bread wheat and tetraploid durum wheat, and show that we are able to generate mutants with no detectable transgenes. Our methods may be applicable to other plant species, thus offering the potential to accelerate basic and applied plant genome-engineering research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Future scenarios for plant phenotyping.

              With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to accurately measure increasingly large numbers of plants and plant parameters. The goal is to provide quantitative analyses of plant structure and function relevant for traits that help plants better adapt to low-input agriculture and resource-limited environments. We provide an overview of the inherently multidisciplinary research in plant phenotyping, focusing on traits that will assist in selecting genotypes with increased resource use efficiency. We highlight opportunities and challenges for integrating noninvasive or minimally invasive technologies into screening protocols to characterize plant responses to environmental challenges for both controlled and field experimentation. Although technology evolves rapidly, parallel efforts are still required because large-scale phenotyping demands accurate reporting of at least a minimum set of information concerning experimental protocols, data management schemas, and integration with modeling. The journey toward systematic plant phenotyping has only just begun.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                March 15 2017
                March 15 2017
                : 543
                : 7645
                : 346-354
                Article
                10.1038/nature22011
                28300107
                0479bbac-cfe0-4d84-aa8c-11e70568631e
                © 2017
                History

                Comments

                Comment on this article