9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cancer genetics.

      Nature
      Animals, DNA Methylation, Estrogens, adverse effects, Gene Expression Regulation, Neoplastic, Genetic Predisposition to Disease, genetics, Humans, Inflammation, pathology, Mutation, Neoplasm Proteins, Neoplasms, etiology, prevention & control

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer genetics has for many years focused on mutational events that have their primary effect within the cancer cell. Recently that focus has widened, with evidence of the importance of epigenetic events and of cellular interactions in cancer development. The role of common genetic variation in determining the range of individual susceptibility within the population is increasingly recognized, and will be addressed using information from the Human Genome Project. These new research directions will highlight determinants of cancer that lie outside the cancer cell, suggest new targets for intervention, and inform the design of strategies for prevention in groups at increased risk.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          DNA hypermethylation in tumorigenesis: epigenetics joins genetics.

          Recently, the concept that epigenetic, as well as genetic, events might be central to the evolution of human cancer is re-emerging. Cancers often exhibit an aberrant methylation of gene promoter regions that is associated with loss of gene function. This DNA change constitutes a heritable state, not mediated by altered nucleotide sequence, that appears to be tightly linked to the formation of transcriptionally repressive chromatin. This epigenetic process acts as an alternative to mutations to disrupt tumor-suppressor gene function and can predispose to genetic alterations through inactivating DNA-repair genes. Dissecting the molecular processes that mediate these methylation changes will enhance our understanding of chromatin modeling and gene regulation and might present novel possibilities for cancer therapy. Methylation changes constitute potentially sensitive molecular markers to define risk states, monitor prevention strategies, achieve early diagnosis, and track the prognosis of cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.

            The matrix metalloproteinase MMP-9/gelatinase B is upregulated in angiogenic dysplasias and invasive cancers of the epidermis in a mouse model of multi-stage tumorigenesis elicited by HPV16 oncogenes. Transgenic mice lacking MMP-9 show reduced keratinocyte hyperproliferation at all neoplastic stages and a decreased incidence of invasive tumors. Yet those carcinomas that do arise in the absence of MMP-9 exhibit a greater loss of keratinocyte differentiation, indicative of a more aggressive and higher grade tumor. Notably, MMP-9 is predominantly expressed in neutrophils, macrophages, and mast cells, rather than in oncogene-positive neoplastic cells. Chimeric mice expressing MMP-9 only in cells of hematopoietic origin, produced by bone marrow transplantation, reconstitute the MMP-9-dependent contributions to squamous carcinogenesis. Thus, inflammatory cells can be coconspirators in carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the insulin-like growth factor family in cancer development and progression.

              H Yu, T. Rohan (2000)
              The insulin-like growth factors (IGFs) are mitogens that play a pivotal role in regulating cell proliferation, differentiation, and apoptosis. The effects of IGFs are mediated through the IGF-I receptor, which is also involved in cell transformation induced by tumor virus proteins and oncogene products. Six IGF-binding proteins (IGFBPs) can inhibit or enhance the actions of IGFs. These opposing effects are determined by the structures of the binding proteins. The effects of IGFBPs on IGFs are regulated in part by IGFBP proteases. Laboratory studies have shown that IGFs exert strong mitogenic and antiapoptotic actions on various cancer cells. IGFs also act synergistically with other mitogenic growth factors and steroids and antagonize the effect of antiproliferative molecules on cancer growth. The role of IGFs in cancer is supported by epidemiologic studies, which have found that high levels of circulating IGF-I and low levels of IGFBP-3 are associated with increased risk of several common cancers, including those of the prostate, breast, colorectum, and lung. Evidence further suggests that certain lifestyles, such as one involving a high-energy diet, may increase IGF-I levels, a finding that is supported by animal experiments indicating that IGFs may abolish the inhibitory effect of energy restriction on cancer growth. Further investigation of the role of IGFs in linking high energy intake, increased cell proliferation, suppression of apoptosis, and increased cancer risk may provide new insights into the etiology of cancer and lead to new strategies for cancer prevention.
                Bookmark

                Author and article information

                Comments

                Comment on this article