13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased collagen expression in tumors is associated with increased risk of metastasis, and triple-negative breast cancer (TNBC) has the highest propensity to develop distant metastases when there is evidence of central fibrosis. Transforming growth factor-β (TGF-β) ligands regulated by cancer-associated fibroblasts (CAFs) promote accumulation of fibrosis and cancer progression. In the present study, we have evaluated TNBC tumors with enhanced collagen to determine whether we can reduce metastasis by targeting the CAFs with Pirfenidone (PFD), an anti-fibrotic agent as well as a TGF-β antagonist. In patient-derived xenograft models, TNBC tumors exhibited accumulated collagen and activated TGF-β signaling, and developed lung metastasis. Next, primary CAFs were established from 4T1 TNBC homograft tumors, TNBC xenograft tumors and tumor specimens of breast cancer patients. CAFs promoted primary tumor growth with more fibrosis and TGF-β activation and lung metastasis in 4T1 mouse model. We then examined the effects of PFD in vitro and in vivo. We found that PFD had inhibitory effects on cell viability and collagen production of CAFs in 2D culture. Furthermore, CAFs enhanced tumor growth and PFD inhibited the tumor growth induced by CAFs by causing apoptosis in the 3D co-culture assay of 4T1 tumor cells and CAFs. In vivo, PFD alone inhibited tumor fibrosis and TGF-β signaling but did not inhibit tumor growth and lung metastasis. However, PFD inhibited tumor growth and lung metastasis synergistically in combination with doxorubicin. Thus, PFD has great potential for a novel clinically applicable TNBC therapy that targets tumor-stromal interaction.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha.

          The stromal microenvironment of tumors, which is a mixture of hematopoietic and mesenchymal cells, suppresses immune control of tumor growth. A stromal cell type that was first identified in human cancers expresses fibroblast activation protein-α (FAP). We created a transgenic mouse in which FAP-expressing cells can be ablated. Depletion of FAP-expressing cells, which made up only 2% of all tumor cells in established Lewis lung carcinomas, caused rapid hypoxic necrosis of both cancer and stromal cells in immunogenic tumors by a process involving interferon-γ and tumor necrosis factor-α. Depleting FAP-expressing cells in a subcutaneous model of pancreatic ductal adenocarcinoma also permitted immunological control of growth. Therefore, FAP-expressing cells are a nonredundant, immune-suppressive component of the tumor microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue.

            Neoplastic cells recruit fibroblasts through various growth factors and cytokines. These "cancer-associated fibroblasts" (CAF) actively interact with neoplastic cells and form a myofibroblastic microenvironment that promotes cancer growth and survival and supports malignancy. Several products of their paracrine signaling repertoire have been recognized as tumor growth and metastasis regulators. However, tumor-promoting cell signaling is not the only reason that makes CAFs key components of the "tumor microenvironment," as CAFs affect both the architecture and growth mechanics of the developing tumor. CAFs participate in the remodeling of peritumoral stroma, which is a prerequisite of neoplastic cell invasion, expansion, and metastasis. CAFs are not present peritumorally as individual cells but they act orchestrated to fully deploy a desmoplastic program, characterized by "syncytial" (or collective) configuration and altered cell adhesion properties. Such myofibroblastic cohorts are reminiscent of those encountered in wound-healing processes. The view of "cancer as a wound that does not heal" led to useful comparisons between wound healing and tumorigenesis and expanded our knowledge of the role of CAF cohorts in cancer. In this integrative model of cancer invasion and metastasis, we propose that the CAF-supported microenvironment has a dual tumor-promoting role. Not only does it provide essential signals for cancer cell dedifferentiation, proliferation, and survival but it also facilitates cancer cell local invasion and metastatic phenomena.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake.

              Tumor-associated fibroblasts are key regulators of tumorigenesis. In contrast to tumor cells, which are genetically unstable and mutate frequently, the presence of genetically more stable fibroblasts in the tumor-stromal compartment makes them an optimal target for cancer immunotherapy. These cells are also the primary source of collagen type I, which contributes to decreased chemotherapeutic drug uptake in tumors and plays a significant role in regulating tumor sensitivity to a variety of chemotherapies. To specifically kill tumor-associated fibroblasts, we constructed an oral DNA vaccine targeting fibroblast activation protein (FAP), which is specifically overexpressed by fibroblasts in the tumor stroma. Through CD8+ T cell-mediated killing of tumor-associated fibroblasts, our vaccine successfully suppressed primary tumor cell growth and metastasis of multidrug-resistant murine colon and breast carcinoma. Furthermore, tumor tissue of FAP-vaccinated mice revealed markedly decreased collagen type I expression and up to 70% greater uptake of chemotherapeutic drugs. Most importantly, pFap-vaccinated mice treated with chemotherapy showed a 3-fold prolongation in lifespan and marked suppression of tumor growth, with 50% of the animals completely rejecting a tumor cell challenge. This strategy opens a new venue for the combination of immuno- and chemotherapies.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                13 December 2016
                14 October 2016
                : 7
                : 50
                : 82889-82901
                Affiliations
                1 Department of Anatomy, University of California, San Francisco, CA, USA
                2 Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA
                3 Present address: Division of Breast Oncology, Saitama Cancer Center, Saitama, Japan
                4 Present address: St. George's University School of Medicine, Grenada
                Author notes
                Correspondence to: Zena Werb, zena.werb@ 123456ucsf.edu
                Article
                12658
                10.18632/oncotarget.12658
                5341254
                27756881
                0489a61c-df53-48f3-9c2d-14a073e48948
                Copyright: © 2016 Takai et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 June 2016
                : 3 October 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                pirfenidone,triple-negative breast cancer,fibrosis,cancer-associated fibroblast,transforming growth factor-β

                Comments

                Comment on this article