12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Induction of Fos protein-like immunoreactivity in the trigeminal spinal nucleus caudalis and upper cervical cord following noxious and non-noxious mechanical stimulation of the whisker pad of the rat with an inferior alveolar nerve transection.

      Brain
      Animals, Antibodies, Conditioning (Psychology), Denervation, Escape Reaction, Hyperalgesia, physiopathology, Male, Mandibular Nerve, physiology, Neurons, chemistry, Physical Stimulation, Proto-Oncogene Proteins c-fos, analysis, immunology, Rats, Rats, Sprague-Dawley, Spinal Cord, cytology, Trigeminal Nucleus, Spinal, Vibrissae

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After transection of the inferior alveolar nerve (IAN: the third branch of the trigeminal nerve), the whisker pad area, which is innervated by the second branch of the trigeminal nerve, showed hypersensitivity to mechanical stimulation. Two days after IAN transection, the threshold intensity for escape behavior to mechanical stimulation of the ipsilateral whisker pad area was less than 1.0 g, a sign of allodynia, and returned to the preoperative level (preoperative threshold: 52.0 g) at 32 days after surgery. This decrement of escape threshold lasted for more than 3 weeks. The whisker pad area contralateral to the IAN transection also showed a decrease in escape threshold to non-noxious mechanical stimulation as compared with sham-operated rats. However, the change in threshold intensity for the side contralateral to transection was not as pronounced as that on the ipsilateral side. Fos protein-like immunoreactive (LI) cells were observed in the superficial laminae but not dominant in deeper laminae of the trigeminal spinal nucleus caudalis (Vc) and the first segment of the spinal cord (C1) after non-noxious mechanical stimulation of the whisker pad area in the rats with IAN transection. Fos protein-LI cells were expressed bilaterally in the Vc and C1, but were more numerous on the ipsilateral side to transection than on the contralateral side. The largest number of Fos protein-LI cells was observed at 2400 microm caudal from the trigeminal subnucleus interporalis (Vi)-Vc border both in ipsilateral and contralateral sides. The number of Fos protein-LI cells increased after application of 1, 4, and 16 g stimuli as compared to rats without mechanical stimulation. Furthermore, an extensively greater number of Fos protein-LI cells were expressed both in superficial and deep laminae of the bilateral Vc and C1 of the spinal cord after subcutaneous injection of mustard oil into the whisker pad. Fos protein expression after mustard oil injection was much stronger than that observed after any mechanical stimulation in the rats with IAN transection. These data suggest that the change in the numbers and spatial arrangement of nociceptive neurons in the Vc and C1 after IAN transection reflect the development of mechanical hyperalgesia in the area adjacent to the IAN innervated region.

          Related collections

          Author and article information

          Comments

          Comment on this article