17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Negative regulators that mediate ocular immune privilege

      1 , 1
      Journal of Leukocyte Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P2">The ocular microenvironment has adapted several negative regulators of inflammation to maintain immune privilege and health of the visual axis. Several constitutively produced negative regulators within the eye TGF- <i>β</i>2, <i>α</i>-melanocyte stimulating hormone ( <i>α</i>-MSH), Fas ligand (FasL), and PD-L1 standout because of their capacity to influence multiple pathways of inflammation, and that they are part of promoting immune tolerance. These regulators demonstrate the capacity of immune privilege to prevent the activation of inflammation, and to suppress activation of effector immune cells even under conditions of ocular inflammation induced by endotoxin and autoimmune disease. In addition, these negative regulators promote and expand immune cells that mediate regulatory and tolerogenic immunity. This in turn makes the immune cells themselves negative regulators of inflammation. This provides for a greater understanding of immune privilege in that it includes both molecular and cellular negative regulators of inflammation. This would mean that potentially new approaches to the treatment of autoimmune disease can be developed through the use of molecules and cells as negative regulators of inflammation. </p>

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the full spectrum of macrophage activation.

          Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myeloid-derived suppressor cells as regulators of the immune system.

            Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases. In this Review, we discuss the origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.

              Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.
                Bookmark

                Author and article information

                Journal
                Journal of Leukocyte Biology
                J Leukoc Biol
                Wiley
                07415400
                June 2018
                June 2018
                February 12 2018
                : 103
                : 6
                : 1179-1187
                Affiliations
                [1 ]Boston University School of Medicine; Boston Massachusetts USA
                Article
                10.1002/JLB.3MIR0817-337R
                6240388
                29431864
                04bb54cd-ac42-4c11-935f-ec8333eee91f
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article