7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Hindbrain Neuroglucopenia Elicits Site-Specific Transcriptional Activation of Glutamate Decarboxylase-Immunopositive Neurons in the Septopreoptic Area of Female Rat Brain

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies implicate the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), in septopreoptic (SPO) mechanisms that suppress preovulatory pituitary luteinizing hormone (LH) secretion during neuroglucopenia. Since Fos immunolabeling of the SPO of rats treated by caudal fourth ventricular (CV4) administration of the glucose antimetabolite, 5-thioglucose (5TG), parallels the distribution of GABA neuronal perikarya, the current studies investigated the genomic responsiveness of neuroanatomically-defined populations of glutamate decarboxylase (GAD)-immunoreactive (-ir) neurons in this region of the brain to hindbrain glucoprivation. In lieu of reports that CV4 5TG enhances SPO GABA turnover via µ opioid receptor (µ-R)-dependent mechanisms and evidence that GAD- and µ-R-ir are codistributed within the SPO, patterns of cellular colocalization of these antigens were also evaluated here. Neural tissue was obtained from groups of steroid-primed ovariectomized female rats 2 h after CV4 injection of vehicle or 5TG. Neuronal cell bodies in the lateral and medial septum, medial (MPN) and median preoptic nuclei (MEPO), and rostral medial preoptic area (rMPO) were immunostained for cytoplasmic GAD-ir, but only GAD-reactive neurons in the rMPO and MEPO exhibited robust nuclear colabeling for Fos in response to 5TG. SPO GABA neurons in the vehicle-treated controls were uniformly Fos-ir-negative. Dual immunolabeling for GAD- and µ-R revealed approximately 52% and 36% colabeling of this phenotype in the MEPO and MPN, and colocalization of lesser magnitude (18%) in the rMPO. These results demonstrate site-specific genomic activation of GABAergic neurons in the female rat SPO by CV4 glucose antimetabolite administration, and implicate MEPO and rMPO GABA cell populations in neural pathways that mediate regulatory effects of hindbrain glucoprivic signaling on CNS functions, including inhibition of the steroid positive feedback-activated gonadotropin-releasing hormone/LH neuroendocrine axis. The current studies also support the view that a proportion of neuroglucoprivic-sensitive GABA neurons in the MEPO and rMPO may be direct substrates for µ-R ligand modulatory actions during this state of central substrate imbalance.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions.

          Glutamate decarboxylase (GAD) catalyzes the production of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The mammalian brain contains two forms of GAD, with Mrs of 67,000 and 65,000 (GAD67 and GAD65). Using a new antiserum specific for GAD67 and a monoclonal antibody specific for GAD65, we show that the two forms of GAD differ in their intraneuronal distributions: GAD67 is widely distributed throughout the neuron, whereas GAD65 lies primarily in axon terminals. In brain extracts, almost all GAD67 is in an active holoenzyme form, saturated with its cofactor, pyridoxal phosphate. In contrast, only about half of GAD65 (which is found in synaptic terminals) exists as active holoenzyme. We suggest that the relative levels of apo-GAD65 and holo-GAD65 in synaptic terminals may couple GABA production to neuronal activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function.

            It is generally assumed that the inhibitory neurotransmitter GABA and the stimulatory neurotransmitter glutamate are released from different neurons in adults. However, this tenet has made it difficult to explain how the same afferent signals can cause opposite changes in GABA and glutamate release. Such reciprocal release is a central mechanism in the neural control of many physiological processes including activation of gonadotropin-releasing hormone (GnRH) neurons, the neural signal for ovulation. Activation of GnRH neurons requires simultaneous suppression of GABA and stimulation of glutamate release, each of which occurs in response to a daily photoperiodic signal, but only in the presence of estradiol (E2). In rodents, E2 and photoperiodic signals converge in the anteroventral periventricular nucleus (AVPV), but it is unclear how these signals differentially regulate GABA and glutamate secretion. We now report that nearly all neurons in the AVPV of female rats express both vesicular glutamate transporter 2 (VGLUT2), a marker of hypothalamic glutamatergic neurons, as well as glutamic acid decarboxylase and vesicular GABA transporter (VGAT), markers of GABAergic neurons. These dual-phenotype neurons are the main targets of E2 in the region and are more than twice as numerous in females as in males. Moreover, dual-phenotype synaptic terminals contact GnRH neurons, and at the time of the surge, VGAT-containing vesicles decrease and VGLUT2-containing vesicles increase in these terminals. Thus, we propose a new model for ovulation that includes dual-phenotype GABA/glutamate neurons as central transducers of hormonal and neural signals to GnRH neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat.

              Gonadal steroids exert a powerful regulatory influence upon the functioning of gonadotropin-releasing hormone (GnRH) neurons despite the apparent absence of gonadal steroid receptors in these cells. By using retrograde-tracing techniques combined with dual-labeling immunocytochemistry, we show here that distinct populations of estrogen receptor alpha (ERalpha)-containing neurons located in the hypothalamus and caudal brainstem project to the vicinity of the GnRH perikarya located in the rostral preoptic area (rPOA). The strongest estrogen-receptive afferent projection to this area originated from neurons located in the anteroventral periventricular and medial preoptic nuclei of the preoptic area. Approximately 50% of arcuate nucleus neurons projecting to the rPOA were demonstrated to synthesize either neuropeptide Y or beta-endorphin, but little evidence was found for ERalpha immunoreactivity in either of these specific subpopulations. Over 80% of all tyrosine hydroxylase-expressing neurons in the arcuate nucleus expressed ERalpha, but none projected to the rPOA. In the caudal brainstem, the A1 and A2 norepinephrine neurons comprised nearly all of the retrogradely labeled neurons. However, only the A2 afferents expressed ERalpha immunoreactivity, whereas the A1 afferents coexpressed neuropeptide Y. These observations, combined with the anterograde labeling data of others, provide neuroanatomical evidence for the existence of specific estrogen-receptive neuronal cell populations that project to the rPOA and may be involved in the estrogen-dependent transsynaptic regulation of GnRH neurons in the rat. Copyright 1999 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2008
                December 2007
                09 October 2007
                : 87
                : 2
                : 113-120
                Affiliations
                Department of Basic Pharmaceutical Sciences, College of Pharmacy, College of Health Sciences, University of Louisiana Monroe, Monroe, La., USA
                Article
                109663 Neuroendocrinology 2008;87:113–120
                10.1159/000109663
                17934249
                04bdc20d-b1ef-467a-aa9c-ee5ce4a9a754
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 15 February 2007
                : 27 June 2007
                Page count
                Figures: 4, References: 35, Pages: 8
                Categories
                Appetite and Energy Balance

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Glutamate decarboxylate,µ Opioid receptor,5-Thioglucose,Fos,Ovariectomy,Median preoptic nucleus,Immunocytochemistry

                Comments

                Comment on this article