9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma levels of lipopolysaccharide correlate with insulin resistance in HIV patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In HIV patients using HAART insulin resistance is a central pathophysiological condition that can contribute to the development of diabetes and cardiovascular complications. To examine the role of adipocyte hormones and LPS in insulin resistance in HIV patients, we investigated the role of adiponectin, leptin, visfatin and LPS levels in the insulin resistance of HIV-infected patients treated with HAART.

          Methods

          This study included 67 HIV positive individuals on HAART and ten healthy controls. All participants performed plasma or serum levels of glucose; insulin; lipids, visfatin, leptin, adiponectin, and LPS. The homeostasis model assessment (HOMA-IR), was used to estimate insulin resistance.

          Results

          The levels of visfatin, leptin and adiponectin were similar between controls and HIV patients. However, circulating levels of LPS were higher in HIV patients on HAART than in controls. There was a positive correlation between LPS and TG (r = 0.49, p = 0.0001), between LPS and TG/HDL (r = 0.50, p = 0.0001), between LPS and insulin (r = 0.52, p = 0.0003), and between LPS and HOMA-IR (r = 0.52, p = 0.0005), in HIV patients.

          Conclusions

          Our results showed a clear correlation between plasma LPS and markers of insulin resistance, suggesting a relationship between LPS levels and metabolic alterations, particularly affecting lipids and insulin resistance in HIV patients.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Nutrient sensing and inflammation in metabolic diseases.

          The proper functioning of the pathways that are involved in the sensing and management of nutrients is central to metabolic homeostasis and is therefore among the most fundamental requirements for survival. Metabolic systems are integrated with pathogen-sensing and immune responses, and these pathways are evolutionarily conserved. This close functional and molecular integration of the immune and metabolic systems is emerging as a crucial homeostatic mechanism, the dysfunction of which underlies many chronic metabolic diseases, including type 2 diabetes and atherosclerosis. In this Review we provide an overview of several important networks that sense and manage nutrients and discuss how they integrate with immune and inflammatory pathways to influence the physiological and pathological metabolic states in the body.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of metabolic markers to identify overweight individuals who are insulin resistant.

            Insulin resistance is more common in overweight individuals and is associated with increased risk for type 2 diabetes mellitus and cardiovascular disease. Given the current epidemic of obesity and the fact that lifestyle interventions, such as weight loss and exercise, decrease insulin resistance, a relatively simple means to identify overweight individuals who are insulin resistant would be clinically useful. To evaluate the ability of metabolic markers associated with insulin resistance and increased risk for cardiovascular disease to identify the subset of overweight individuals who are insulin resistant. Cross-sectional study. General clinical research center. 258 nondiabetic, overweight volunteers. Body mass index; fasting glucose, insulin, lipid and lipoprotein concentrations; and insulin-mediated glucose disposal as quantified by the steady-state plasma glucose concentration during the insulin suppression test. Overweight was defined as body mass index of 25 kg/m2 or greater, and insulin resistance was defined as being in the top tertile of steady-state plasma glucose concentrations. Receiver-operating characteristic curve analysis was used to identify the best markers of insulin resistance; optimal cut-points were identified and analyzed for predictive power. Plasma triglyceride concentration, ratio of triglyceride to high-density lipoprotein cholesterol concentrations, and insulin concentration were the most useful metabolic markers in identifying insulin-resistant individuals. The optimal cut-points were 1.47 mmol/L (130 mg/dL) for triglyceride, 1.8 in SI units (3.0 in traditional units) for the triglyceride-high-density lipoprotein cholesterol ratio, and 109 pmol/L for insulin. Respective sensitivity and specificity for these cut-points were 67%, 64%, and 57% and 71%, 68%, and 85%. Their ability to identify insulin-resistant individuals was similar to the ability of the criteria proposed by the Adult Treatment Panel III to diagnose the metabolic syndrome (sensitivity, 52%, and specificity, 85%). Three relatively simple metabolic markers can help identify overweight individuals who are sufficiently insulin resistant to be at increased risk for various adverse outcomes. In the absence of a standardized insulin assay, we suggest that the most practical approach to identify overweight individuals who are insulin resistant is to use the cut-points for either triglyceride concentration or the triglyceride-high-density lipoprotein cholesterol concentration ratio.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk.

              Compelling evidence supports the concepts that gut microbiota actively promotes weight gain and fat accumulation and sustains, indirectly, a condition of low-grade inflammation, thus enhancing the cardiovascular risk. Fewer Bacteroidetes and more Firmicutes seem to characterize the gut microbiota of obese people as compared with that of lean individuals. This difference translates into an increased efficiency of microbiota of obese individuals in harvesting energy from otherwise indigestible carbohydrates. Furthermore, the microbiota also seems able to favor fat accumulation. Indeed, studies performed in germ-free animals have demonstrated that conventionalization of sterile intestine with gut microbiota is associated with an enhanced expression of various lipogenic genes in different tissues, i.e., hepatic, adipose, and muscle tissues. Finally, the microbiota favors systemic exposure to the lipopolysaccharides (LPSs), large glycolipids derived from the outer membrane of Gram-negative bacteria. LPSs can cause a condition of "metabolic endotoxemia" characterized by low-grade inflammation, insulin resistance, and augmented cardiovascular risk. LPSs are a powerful trigger for the innate immune system response. Upon binding to the Toll-like receptor 4 and its coreceptors, LPSs trigger a cascade of responses ultimately resulting in the release of proinflammatory molecules that interfere with modulation of glucose and insulin metabolism, promote development and rupture of the atherosclerotic plaque, and favor progression of fatty liver disease to steatohepatitis. This review gives a comprehensive breakdown of the interaction among gut microbiota, LPSs, and the innate immune system in the development of obesity and promotion of an individual's cardiovascular risk.
                Bookmark

                Author and article information

                Contributors
                dioze@fcm.unicamp.br
                danimagro@terra.com.br
                nutri.elizabeteurbano@gmail.com
                diozeg@gmail.com
                andreysts@gmail.com
                rjpedro.res@gmail.com
                +55 19 35218950 , msaad@fcm.unicamp.br
                Journal
                Diabetol Metab Syndr
                Diabetol Metab Syndr
                Diabetology & Metabolic Syndrome
                BioMed Central (London )
                1758-5996
                31 January 2018
                31 January 2018
                2018
                : 10
                : 5
                Affiliations
                ISNI 0000 0001 0723 2494, GRID grid.411087.b, Department of Internal Medicine-FCM, , University of Campinas-UNICAMP, ; Campinas, SP Brazil
                Article
                308
                10.1186/s13098-018-0308-7
                5793397
                04becb84-9b7d-4669-afbb-67a059767287
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 December 2017
                : 22 January 2018
                Funding
                Funded by: CEPID/Fapesp
                Award ID: 201307607-8
                Award Recipient :
                Funded by: INCT (National Institute of Science and Technology for Diabetes and Obesity)
                Award ID: 573856/2008-7
                Award Recipient :
                Funded by: CAPES/CNPq
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Nutrition & Dietetics
                hiv,haart,insulin resistance,lps
                Nutrition & Dietetics
                hiv, haart, insulin resistance, lps

                Comments

                Comment on this article