15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increasing Genetic Variance of Body Mass Index during the Swedish Obesity Epidemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives

          There is no doubt that the dramatic worldwide increase in obesity prevalence is due to changes in environmental factors. However, twin and family studies suggest that genetic differences are responsible for the major part of the variation in adiposity within populations. Recent studies show that the genetic effects on body mass index (BMI) may be stronger when combined with presumed risk factors for obesity. We tested the hypothesis that the genetic variance of BMI has increased during the obesity epidemic.

          Methods

          The data comprised height and weight measurements of 1,474,065 Swedish conscripts at age 18–19 y born between 1951 and 1983. The data were linked to the Swedish Multi-Generation Register and the Swedish Twin Register from which 264,796 full-brother pairs, 1,736 monozygotic (MZ) and 1,961 dizygotic (DZ) twin pairs were identified. The twin pairs were analysed to identify the most parsimonious model for the genetic and environmental contribution to BMI variance. The full-brother pairs were subsequently divided into subgroups by year of birth to investigate trends in the genetic variance of BMI.

          Results

          The twin analysis showed that BMI variation could be explained by additive genetic and environmental factors not shared by co-twins. On the basis of the analyses of the full-siblings, the additive genetic variance of BMI increased from 4.3 [95% CI 4.04–4.53] to 7.9 [95% CI 7.28–8.54] within the study period, as did the unique environmental variance, which increased from 1.4 [95% CI 1.32–1.48] to 2.0 [95% CI 1.89–2.22]. The BMI heritability increased from 75% to 78.8%.

          Conclusion

          The results confirm the hypothesis that the additive genetic variance of BMI has increased strongly during the obesity epidemic. This suggests that the obesogenic environment has enhanced the influence of adiposity related genes.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology of obesity.

          In the United States, obesity among adults and overweight among children and adolescents have increased markedly since 1980. Among adults, obesity is defined as a body mass index of 30 or greater. Among children and adolescents, overweight is defined as a body mass index for age at or above the 95th percentile of a specified reference population. In 2003-2004, 32.9% of adults 20-74 years old were obese and more than 17% of teenagers (age, 12-19 y) were overweight. Obesity varies by age and sex, and by race-ethnic group among adult women. A higher body weight is associated with an increased incidence of a number of conditions, including diabetes mellitus, cardiovascular disease, and nonalcoholic fatty liver disease, and with an increased risk of disability. Obesity is associated with a modestly increased risk of all-cause mortality. However, the net effect of overweight and obesity on morbidity and mortality is difficult to quantify. It is likely that a gene-environment interaction, in which genetically susceptible individuals respond to an environment with increased availability of palatable energy-dense foods and reduced opportunities for energy expenditure, contributes to the current high prevalence of obesity. Evidence suggests that even without reaching an ideal weight, a moderate amount of weight loss can be beneficial in terms of reducing levels of some risk factors, such as blood pressure. Many studies of dietary and behavioral treatments, however, have shown that maintenance of weight loss is difficult. The social and economic costs of obesity and of attempts to prevent or to treat obesity are high.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physical activity and the association of common FTO gene variants with body mass index and obesity.

            Common FTO (fat mass and obesity associated) gene variants have recently been associated with body mass index (BMI) and obesity in several large studies. The role of lifestyle factors (such as physical activity) in those with an underlying FTO genetic predisposition is unknown. To determine if FTO variants are associated with BMI in Old Order Amish (OOA) individuals, and to further determine whether the detrimental associations of FTO gene variants can be lessened by increased physical activity, a total of 704 healthy OOA adults were selected from the Heredity and Phenotype Intervention (HAPI) Heart Study, an investigation of gene x environment interactions in cardiovascular disease, for whom objective quantified physical activity measurements were available and for whom 92 single-nucleotide polymorphisms (SNPs) in FTO were genotyped. Twenty-six FTO SNPs were associated with BMI (P = .04 to <.001), including rs1477196 (P < .001) and rs1861868 (P < .001), 2 SNPs in moderate linkage disequilibrium in the OOA (D' = 0.82; r(2) = 0.36). Stratified analyses of rs1861868 revealed its association with BMI to be restricted entirely to those subjects with low sex- and age-adjusted physical activity scores (P < .001); in contrast, the SNP had no effect on those with above-average physical activity scores (P = .29), with the genotype x physical activity interaction achieving statistical significance (P = .01). Similar evidence for interaction was also obtained for rs1477196. Our results strongly suggest that the increased risk of obesity owing to genetic susceptibility by FTO variants can be blunted through physical activity. These findings emphasize the important role of physical activity in public health efforts to combat obesity, particularly in genetically susceptible individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries.

              Body mass index (BMI), a simple anthropometric measure, is the most frequently used measure of adiposity and has been instrumental in documenting the worldwide increase in the prevalence of obesity witnessed during the last decades. Although this increase in overweight and obesity is thought to be mainly due to environmental changes, i.e., sedentary lifestyles and high caloric diets, consistent evidence from twin studies demonstrates high heritability and the importance of genetic differences for normal variation in BMI. We analysed self-reported data on BMI from approximately 37,000 complete twin pairs (including opposite sex pairs) aged 20-29 and 30-39 from eight different twin registries participating in the GenomEUtwin project. Quantitative genetic analyses were conducted and sex differences were explored. Variation in BMI was greater for women than for men, and in both sexes was primarily explained by additive genetic variance in all countries. Sex differences in the variance components were consistently significant. Results from analyses of opposite sex pairs also showed evidence of sex-specific genetic effects suggesting there may be some differences between men and women in the genetic factors that influence variation in BMI. These results encourage the continued search for genes of importance to the body composition and the development of obesity. Furthermore, they suggest that strategies to identify predisposing genes may benefit from taking into account potential sex specific effects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                7 November 2011
                : 6
                : 11
                : e27135
                Affiliations
                [1 ]Institute of Preventive Medicine, Copenhagen University Hospital, Centre for Health and Society, Copenhagen, Denmark
                [2 ]Population Research Unit, Department of Social Research, University of Helsinki, Helsinki, Finland
                [3 ]Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
                Ohio State University Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: BR TIAS FR KS. Performed the experiments: BR. Analyzed the data: BR. Contributed reagents/materials/analysis tools: TIAS FR KS MG PT. Wrote the paper: BR. Reviewing and editing of the text: BR KS PT MG TIAS FR.

                Article
                PONE-D-11-15375
                10.1371/journal.pone.0027135
                3210134
                22087252
                04d820e0-e353-4a55-9190-41530942f721
                Rokholm et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 August 2011
                : 11 October 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Genetics
                Heredity
                Complex Traits
                Phenotypes
                Quantitative Traits
                Human Genetics
                Genome-Wide Association Studies
                Population Genetics
                Gene Pool
                Gene Expression
                Gene Function
                Genetics of Disease
                Population Biology
                Population Genetics
                Medicine
                Epidemiology
                Public Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article