9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adrenomedullin and diabetes mellitus.

      Diabetes/Metabolism Research and Reviews
      Adrenomedullin, Antihypertensive Agents, Diabetes Mellitus, Diabetes Mellitus, Type 1, blood, Diabetes Mellitus, Type 2, Humans, Peptides, chemistry, genetics, physiology, Pheochromocytoma, Receptors, Adrenomedullin, Receptors, Peptide, Second Messenger Systems, Vasodilator Agents

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adrenomedullin (AM) is a novel 52 amino acid peptide hormone, originally isolated from human pheochromocytoma. AM acts as a local autocrine and/or paracrine vasoactive hormone and has vasodilator and blood pressure lowering properties. AM as a vasodilative molecule protects the vascular wall but its exact role is still uncertain. AM is considered to play an important endocrine role in various tissues in maintaining electrolyte and fluid homeostasis. Its plasma concentration in healthy conditions is low. In hypertension, chronic renal failure and congestive heart failure its plasma concentration increases in a parallel manner with the severity of the disease. It is assumed that this peptide plays an important role in physiological and pathological conditions compensating the effects of vasoconstrictive molecules. Investigations have proven that in diabetic angiopathies the levels and production of vasoconstrictive factors and AM are increased, while other relaxing substances such as nitric oxide (NO) are decreased. It is still uncertain whether the increased release of AM is a compensatory mechanism or a coincidental event. Although the precise role of AM in the pathogenesis of diabetic complications is still to be elucidated, the altered concentration of AM in diabetes could indicate a certain interaction between AM induction and vascular function. Hence, the induction of vascular AM can be a new target of therapeutic approach to diabetic complications. Copyright 2001 John Wiley & Sons, Ltd.

          Related collections

          Author and article information

          Comments

          Comment on this article