12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lysophospholipase D and its role in LPA production.

      Cellular Signalling
      Animals, Humans, Lysophospholipids, biosynthesis, Phosphoric Diester Hydrolases, isolation & purification, metabolism

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysophosphatidic acid (LPA) is an important lipid mediator that binds to G-protein-coupled receptors of the Edg family, inducing proliferation and migration in many cell lines. Much has been learned about pathways involved in LPA signaling, but the pathways responsible for LPA production remain to be fully resolved. Several potential routes have been proposed for LPA production. One involves the sequential actions of phopholipase D (PLD) and phospholipase A(2) (PLA(2)). Another route involves the sequential actions of PLA(2) and lysophospholipase D (lysoPLD). LysoPLD is defined as an enzyme which hydrolyzes lysophospholipids to produce LPA. Two major forms of lysoPLD, microsomal and extracellular forms, have been reported. A microsomal lysoPLD plays an important role in the metabolism of platelet-activating factor (PAF) because of its preference for alkyl-phospholipids. The extracellular form of lysoPLD coexists with its substrate, lysophosphatidylcholine (LPC), in the extracellular compartment. LysoPLDs purified from the extracellular space have recently been shown to be molecularly identical to autotaxin (ATX). ATX, an enzyme previously known to possess 5'-nucleotide pyrophosphatase and phosphodiesterase (PDE) activities, was subsequently shown to have lysoPLD activity. The unexpected linkage of the extracellular lysoPLD with ATX has raised many interesting questions. The characterization and purification of lysoPLDs are reviewed here.

          Related collections

          Author and article information

          Journal
          15212758
          10.1016/j.cellsig.2004.03.005

          Chemistry
          Animals,Humans,Lysophospholipids,biosynthesis,Phosphoric Diester Hydrolases,isolation & purification,metabolism

          Comments

          Comment on this article