2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tomographic left ventricular volume determination in the presence of aneurysm by three-dimensional echocardiographic imaging. I: Asymmetric model hearts.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To improve the accuracy of measurements of left ventricular volume in the presence of an aneurysm, we used three-dimensional echocardiographic imaging to analyze the shape of left ventricles in 23 asymmetric model hearts with eccentric aneurysms of different sizes, shapes, and localizations. A standard 3.75 MHz ultrasound probe with a rotation motor device was used to obtain a three-dimensional data set. By rotating the probe stepwise 1 degree, 180 radial ultrasound pictures were digitized. On the basis of the three-dimensional data set, the following parameters were determined and compared with the dimensions of the model hearts obtained by direct measurement: total left ventricular volume (LVV), aneurysm volume, area of the aneurysm's base, the longest aneurysm long diameter, and the longest aneurysm cross diameter. In addition, quantification of LVV by three-dimensional echocardiography was compared with biplane two-dimensional echocardiographic measurement according to the disk method. Good agreements were found for LVV measured by both techniques, three-dimensional echocardiographic and direct measurement (mean of differences = 0.91 ml; SD of differences = +/- 6.23 ml; line of regression y = 1.07 x - 14.24 ml; r = 0.968; standard error of the estimate [SEE] = +/- 6.17 ml), aneurysm volume (mean of differences = 0.43 ml; SD of differences = +/- 2.14 ml; line of regression y = 1.05 x - 0.81 ml; r = 0.996; SEE = +/- 1.96 ml), area of the aneurysm's base (mean of differences = 0.24 cm2; SD of differences = +/- 1.72 cm2; line of regression y = 1.02 x - 0.02 cm2; r = 0.981; SEE = +/- 1.75 cm2), the longest aneurysm long diameter (mean of differences = -0.26 mm; SD of differences = +/- 1.60 mm; line of regression y = 0.97 x + 1.34 mm; r = 0.996; SEE = +/- 1.54 mm), and the longest aneurysm cross diameter (mean of differences = 1.35 mm; SD of differences = +/- 3.94 mm; line of regression y = 0.95 x + 3.17 mm; r = 0.941; SEE = +/- 3.99 mm). In contrast, in these extremely asymmetric-shaped model hearts, agreement between biplane two-dimensional echocardiographic and both direct LVV measurement (mean of differences = 7.8 ml; SD of differences = +/- 20.8 ml; line of regression y = 1.48 x - 92.45 ml; r = 0.874; SEE = +/- 18.36 ml) and three-dimensional echocardiographic measurements (mean of differences = -7.6 ml; SD of difference = +/- 18.1 ml; line of regression y = 0.59 x + 80.98 ml; r = 0.908; SEE = +/- 10.36 ml) was poor. Thus tomographic three-dimensional echocardiography allowed accurate volume determination of asymmetric model hearts in the shape of left ventricles with eccentric aneurysms.

          Related collections

          Author and article information

          Journal
          J Am Soc Echocardiogr
          Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
          0894-7317
          0894-7317
          July 1 1996
          : 9
          : 4
          Affiliations
          [1 ] Department of Cardiology, University-Gesamthochschule Essen, Germany.
          Article
          S0894731796000065
          8827632
          04f0d2ee-3d06-46c8-b3b5-b994f1f370bf
          History

          Comments

          Comment on this article