21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationships of Circulating Sex Hormone–Binding Globulin With Metabolic Traits in Humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Recent data suggested that sex hormone–binding globulin (SHBG) levels decrease when fat accumulates in the liver and that circulating SHBG may be causally involved in the pathogenesis of type 2 diabetes in humans. In the present study, we investigated mechanisms by which high SHBG may prevent development to diabetes.

          RESEARCH DESIGN AND METHODS

          Before and during a 9-month lifestyle intervention, total body and visceral fat were precisely measured by magnetic resonance (MR) tomography and liver fat was measured by 1H-MR spectroscopy in 225 subjects. Insulin sensitivity was estimated from a 75-g oral glucose tolerance test (IS OGTT) and measured by a euglycemic hyperinsulinemic clamp (IS clamp, n = 172). Insulin secretion was measured during the OGTT and an ivGTT ( n = 172).

          RESULTS

          SHBG levels correlated positively with insulin sensitivity (IS OGTT, P = 0.037; IS clamp, P = 0.057), independently of age, sex, and total body fat. In a multivariate model, these relationships were also significant after additional adjustment for levels of the adipokine adiponectin and the hepatokine fetuin-A (IS OGTT, P = 0.0096; IS clamp, P = 0.029). Adjustment of circulating SHBG for liver fat abolished the relationships of SHBG with insulin sensitivity. In contrast, circulating SHBG correlated negatively with fasting glycemia, before ( r = −0.17, P = 0.009) and after ( r = −0.14, P = 0.04) adjustment for liver fat. No correlation of circulating SHBG with adjusted insulin secretion was observed (OGTT, P = 0.16; ivGTT, P = 0.35). The SNP rs1799941 in SHBG was associated with circulating SHBG ( P ≤ 0.025) but not with metabolic characteristics (all P > 0.18).

          CONCLUSIONS

          Possible mechanisms by which high circulating SHBG prevents the development of type 2 diabetes involve regulation of fasting glycemia but not alteration of insulin secretory function.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

          Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and characterization of metabolically benign obesity in humans.

            Obesity represents a risk factor for insulin resistance, type 2 diabetes mellitus, and atherosclerosis. In addition, for any given amount of total body fat, an excess of visceral fat or fat accumulation in the liver and skeletal muscle augments the risk. Conversely, even in obesity, a metabolically benign fat distribution phenotype may exist. In 314 subjects, we measured total body, visceral, and subcutaneous fat with magnetic resonance (MR) tomography and fat in the liver and skeletal muscle with proton MR spectroscopy. Insulin sensitivity was estimated from oral glucose tolerance test results. Subjects were divided into 4 groups: normal weight (body mass index [BMI] [calculated as weight in kilograms divided by height in meters squared], or = 30.0 and placement in the upper quartile of insulin sensitivity), and obese-insulin resistant (IR) (BMI, > or = 30.0 and placement in the lower 3 quartiles of insulin sensitivity). Total body and visceral fat were higher in the overweight and obese groups compared with the normal-weight group (P < .05); however, no differences were observed between the obese groups. In contrast, ectopic fat in skeletal muscle (P < .001) and particularly the liver (4.3% +/- 0.6% vs 9.5% +/- 0.8%) and the intima-media thickness of the common carotid artery (0.54 +/- 0.02 vs 0.59 +/- 0.01 mm) were lower and insulin sensitivity was higher (17.4 +/- 0.9 vs 7.3 +/- 0.3 arbitrary units) in the obese-IS vs the obese-IR group (P < .05). Unexpectedly, the obese-IS group had almost identical insulin sensitivity and the intima-media thickness was not statistically different compared with the normal-weight group (18.2 +/- 0.9 AU and 0.51 +/- 0.02 mm, respectively). A metabolically benign obesity that is not accompanied by insulin resistance and early atherosclerosis exists in humans. Furthermore, ectopic fat in the liver may be more important than visceral fat in the determination of such a beneficial phenotype in obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mediators of hepatic steatosis and liver injury.

              Obesity and its associated comorbidities are among the most prevalent and challenging conditions confronting the medical profession in the 21st century. A major metabolic consequence of obesity is insulin resistance, which is strongly associated with the deposition of triglycerides in the liver. Hepatic steatosis can either be a benign, noninflammatory condition that appears to have no adverse sequelae or can be associated with steatohepatitis: a condition that can result in end-stage liver disease, accounting for up to 14% of liver transplants in the US. Here we highlight recent advances in our understanding of the molecular events contributing to hepatic steatosis and nonalcoholic steatohepatitis.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                December 2010
                14 September 2010
                : 59
                : 12
                : 3167-3173
                Affiliations
                [1] 1Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University of Tübingen, member of the German Center for Diabetes Research (DZD), Tübingen, Germany;
                [2] 2Section on Experimental Radiology, University of Tübingen, Tübingen, Germany.
                Author notes
                Corresponding author: Norbert Stefan, norbert.stefan@ 123456med.uni-tuebingen.de .
                Article
                0179
                10.2337/db10-0179
                2992779
                20841609
                0515d1c7-ae0a-4f3b-8121-d676d5dc197d
                © 2010 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 4 February 2010
                : 3 September 2010
                Categories
                Pathophysiology

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article