4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrathecal, Not Systemic Inflammation Is Correlated With Multiple Sclerosis Severity, Especially in Progressive Multiple Sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: To test the hypothesis that Multiple Sclerosis (MS) patients have increased peripheral inflammation compared to healthy donors and that this systemic activation of the immune system, reflected by acute phase reactants (APRs) measured in the blood, contributes to intrathecal inflammation, which in turn contributes to the development of disability in MS.

          Methods: Eight serum APRs measured in a prospectively-collected cross-sectional cohort with a total of 51 healthy donors and 291 untreated MS patients were standardized and assembled into related biomarker clusters to derive global measures of systemic inflammation. The resulting APR clusters were compared between diagnostic categories and correlated to equivalently-derived cerebrospinal fluid (CSF) biomarkers of innate and adaptive immunity. Finally, correlations were calculated between biomarkers of systemic and intrathecal inflammation and MS severity measures, which predict future rates of disability progression.

          Results: While two blood APR clusters were elevated in MS patients, only one exhibited a weak correlation with MS severity. All CSF inflammation clusters, except CSF albumin, correlated with at least one measure of MS severity, with biomarkers of humoral adaptive immunity exhibiting the strongest correlations, especially in Progressive MS.

          Conclusion: Systemic inflammation does not appear to be strongly associated with intrathecal inflammation in MS. Positive correlations between markers of intrathecal inflammation, especially of humoral immunity, with MS severity measures support a pathogenic role of intrathecal (compartmentalized) inflammation in central nervous system tissue destruction, including in Progressive MS.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity.

          There is no consensus method for determining progression of disability in patients with multiple sclerosis (MS) when each patient has had only a single assessment in the course of the disease. Using data from two large longitudinal databases, the authors tested whether cross-sectional disability assessments are representative of disease severity as a whole. An algorithm, the Multiple Sclerosis Severity Score (MSSS), which relates scores on the Expanded Disability Status Scale (EDSS) to the distribution of disability in patients with comparable disease durations, was devised and then applied to a collection of 9,892 patients from 11 countries to create the Global MSSS. In order to compare different methods of detecting such effects the authors simulated the effects of a genetic factor on disability. Cross-sectional EDSS measurements made after the first year were representative of overall disease severity. The MSSS was more powerful than the other methods the authors tested for detecting different rates of disease progression. The Multiple Sclerosis Severity Score (MSSS) is a powerful method for comparing disease progression using single assessment data. The Global MSSS can be used as a reference table for future disability comparisons. While useful for comparing groups of patients, disease fluctuation precludes its use as a predictor of future disability in an individual.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reassessing B cell contributions in multiple sclerosis

            There is growing recognition that B cell contributions to normal immune responses extend well beyond their potential to become antibody-producing cells, including roles at the innate-adaptive interface and their potential to modulate the responses of other immune cells such as T cells and myeloid cells. These B cell functions can have both pathogenic and protective effects in the context of central nervous system (CNS) inflammation. Here, we review recent advances in the field of multiple sclerosis (MS), which has traditionally been viewed as primarily a T cell-mediated disease, and we consider antibody-dependent and, particularly, emerging antibody-independent functions of B cells that may be relevant in both the peripheral and CNS disease compartments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              γ-secretase directly sheds the survival receptor BCMA from plasma cells

              Survival of plasma cells is regulated by B-cell maturation antigen (BCMA), a membrane-bound receptor activated by its agonist ligands BAFF and APRIL. Here we report that γ-secretase directly cleaves BCMA, without prior truncation by another protease. This direct shedding is facilitated by the short length of BCMA's extracellular domain. In vitro, γ-secretase reduces BCMA-mediated NF-κB activation. In addition, γ-secretase releases soluble BCMA (sBCMA) that acts as a decoy neutralizing APRIL. In vivo, inhibition of γ-secretase enhances BCMA surface expression in plasma cells and increases their number in the bone marrow. Furthermore, in multiple sclerosis, sBCMA levels in spinal fluid are elevated and associated with intracerebral IgG production; in systemic lupus erythematosus, sBCMA levels in serum are elevated and correlate with disease activity. Together, shedding of BCMA by γ-secretase controls plasma cells in the bone marrow and yields a potential biomarker for B-cell involvement in human autoimmune diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                22 November 2019
                2019
                : 10
                : 1232
                Affiliations
                Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD, United States
                Author notes

                Edited by: Edgar Meinl, Ludwig Maximilian University of Munich, Germany

                Reviewed by: Tatsuro Misu, Tohoku University, Japan; Ivan Jelcic, Neuroimmunology and MS Research Zurich (NIMS), Switzerland

                *Correspondence: Bibiana Bielekova bibi.bielekova@ 123456nih.gov

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2019.01232
                6884093
                31824409
                0516855b-da3a-47a0-b513-a5ee720375d4
                Copyright © 2019 Milstein, Barbour, Jackson, Kosa and Bielekova.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 August 2019
                : 05 November 2019
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 32, Pages: 13, Words: 7812
                Categories
                Neurology
                Original Research

                Neurology
                multiple sclerosis,inflammation,systemic infections,cerebrospinal fluid,innate immunity,adaptive immunity,t cells,acute phase reactants

                Comments

                Comment on this article